29,543 research outputs found
Expert system training and control based on the fuzzy relation matrix
Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model
Static, massive fields and vacuum polarization potential in Rindler space
In Rindler space, we determine in terms of special functions the expression
of the static, massive scalar or vector field generated by a point source. We
find also an explicit integral expression of the induced electrostatic
potential resulting from the vacuum polarization due to an electric charge at
rest in the Rindler coordinates. For a weak acceleration, we give then an
approximate expression in the Fermi coordinates associated with the uniformly
accelerated observer.Comment: 11 pages, latex, no figure
Whatever It Takes: How and When Supervisor Bottom-Line Mentality Motivates Employee Contributions in the Workplace
Given that many organizations are competitive and finance centered, organizational leaders may lead with a primary focus on bottom-line attainment, such that they are perceived by their subordinates as having a bottom-line mentality (BLM) that entails pursuing bottom-line outcomes above all else. Yet, the field is limited in understanding why such a leadership approach affects employees’ positive and negative contributions in the workplace. Drawing on social exchange theory, we theorize that supervisors high in BLM can influence employees’ felt obligation toward the bottom line, which in turn can influence employees’ task performance and unethical pro-organizational behavior (UPB). We also examine employee ambition as a moderator of this process. Using three-wave, multisource data collected from the financial services industry, our results revealed that high-BLM supervisors elevate employee task performance as well as UPB by motivating employees’ felt obligation toward the bottom line. Furthermore, we found that employee ambition served as a first-stage moderator, such that the mediated relationships were stronger when employee ambition was high as opposed to low. Our findings break away from the dominant dysfunctional view of BLM and provide a more balanced view of this mentality
Photometric and Spectroscopic Observations of the Algol Type Binary V Triangle
Time-series, multi-color photometry and high-resolution spectra of the short
period eclipsing binary V Tri were obtained by observations. The completely
covered light and radial velocity curves of the binary system are presented.
All times of light minima derived from both photoelectric and CCD photometry
were used to calculate the orbital period and new ephemerides of the eclipsing
system. The analysis of diagram reveals that the orbital period is
, decreasing at a rate of $dP/dt=-7.80\times10^{-8} d\
yr^{-1} 1.60\pm0.07 M_\odot1.64\pm0.02 R_\odot14.14\pm0.73 L_\odot0.74\pm0.02 M_\odot1.23\pm0.02 R_\odot1.65\pm0.05 L_\odot$, respectively.Comment: 11 pages, 6 figures, Accepted for publication by A
Social networks : the future for health care delivery
With the rapid growth of online social networking for health, health care systems are experiencing an inescapable increase in complexity. This is not necessarily a drawback; self-organising, adaptive networks could become central to future health care delivery. This paper considers whether social networks composed of patients and their social circles can compete with, or complement, professional networks in assembling health-related information of value for improving health and health care. Using the framework of analysis of a two-sided network – patients and providers – with multiple platforms for interaction, we argue that the structure and dynamics of such a network has implications for future health care. Patients are using social networking to access and contribute health information. Among those living with chronic illness and disability and engaging with social networks, there is considerable expertise in assessing, combining and exploiting information. Social networking is providing a new landscape for patients to assemble health information, relatively free from the constraints of traditional health care. However, health information from social networks currently complements traditional sources rather than substituting for them. Networking among health care provider organisations is enabling greater exploitation of health information for health care planning. The platforms of interaction are also changing. Patient-doctor encounters are now more permeable to influence from social networks and professional networks. Diffuse and temporary platforms of interaction enable discourse between patients and professionals, and include platforms controlled by patients. We argue that social networking has the potential to change patterns of health inequalities and access to health care, alter the stability of health care provision and lead to a reformulation of the role of health professionals. Further research is needed to understand how network structure combined with its dynamics will affect the flow of information and potentially the allocation of health care resources
Some recent progress on quark pairings in dense quark and nuclear matter
We give a brief overview on some recent progress in quark pairings in dense
quark/nuclear matter mostly developed in the past five years. We focus on
following aspects in particular: the BCS-BEC crossover in the CSC phase, the
baryon formation and dissociation in dense quark/nuclear matter, the
Ginzburg-Landau theory for three-flavor dense matter with (1) anomaly,
and the collective and Nambu-Goldstone modes for the spin-one CSC.Comment: RevTex 4, 25 pages, 9 figures, presented for the KITPC (Kavli
Institute for Theoretical Physics China) program "AdS/CFT and Novel
Approaches to Hadron and Heavy Ion Physics' in Oct. 11- Dec. 3, 201
Entropy Driven Dimerization in a One-Dimensional Spin-Orbital Model
We study a new version of the one-dimensional spin-orbital model with spins
S=1 relevant to cubic vanadates. At small Hund's coupling J_H we discover
dimerization in a pure electronic system solely due to a dynamical spin-orbital
coupling. Above a critical value J_H, a uniform ferromagnetic state is
stabilized at zero temperature. More surprisingly, we observe a temperature
driven dimerization of the ferrochain, which occurs due to a large entropy
released by dimer states. This dynamical dimerization seems to be the mechanism
driving the peculiar intermediate phase of YVO_3.Comment: 5 pages, 4 figure
Signature of high temperature superconductivity in electron doped Sr2IrO4
Sr2IrO4 was predicted to be a high temperature superconductor upon electron
doping since it highly resembles the cuprates in crystal structure, electronic
structure and magnetic coupling constants. Here we report a scanning tunneling
microscopy/spectroscopy (STM/STS) study of Sr2IrO4 with surface electron doping
by depositing potassium (K) atoms. At the 0.5-0.7 monolayer (ML) K coverage, we
observed a sharp, V-shaped gap with about 95% loss of density of state (DOS) at
EFand visible coherence peaks. The gap magnitude is 25-30 meV for 0.5-0.6 ML K
coverage and it closes around 50 K. These behaviors exhibit clear signature of
superconductivity. Furthermore, we found that with increased electron doping,
the system gradually evolves from an insulating state to a normal metallic
state, via a pseudogap-like state and possible superconducting state. Our data
suggest possible high temperature superconductivity in electron doped Sr2IrO4,
and its remarkable analogy to the cuprates.Comment: 11 pages, 5 figure
The Ginzburg-Landau Free Energy Functional of Color Superconductivity at Weak Coupling
We derive the Ginzburg-Landau free energy functional of color
superconductivity in terms of the thermal diagrams of QCD in its perturbative
region. The zero mode of the quadratic term coefficient yields the same
transition temperature, including the pre-exponential factor, as the one
obtained previously from the Fredholm determinant of the two quark scattering
amplitude. All coefficients of the free energy can be made identical to those
of a BCS model by setting the Fermi velocity of the latter equal to the speed
of light. We also calculate the induced symmetric color condensate near
and find that it scales as the cubic power of the dominant antisymmetric color
component. We show that in the presence of an inhomogeneity and a nonzero gauge
potential, while the color-flavor locked condensate dominates in the bulk, the
unlocked condensate, the octet, emerges as a result of a simultaneous
color-flavor rotation in the core region of a vortex filament or at the
junction of super and normal phases.Comment: 32 pages, Plain Tex, 3 figure
- …
