6,391 research outputs found
Analysis of Two-Body Decays of Charmed Baryons Using the Quark-Diagram Scheme
We give a general formulation of the quark-diagram scheme for the nonleptonic
weak decays of baryons. We apply it to all the decays of the antitriplet and
sextet charmed baryons and express their decay amplitudes in terms of the
quark-diagram amplitudes. We have also given parametrizations for the effects
of final-state interactions. For SU(3) violation effects, we only parametrize
those in the horizontal -loop quark diagrams whose contributions are solely
due to SU(3)-violation effects. In the absence of all these effects, there are
many relations among various decay modes. Some of the relations are valid even
in the presence of final-state interactions when each decay amplitude in the
relation contains only a single phase shift. All these relations provide useful
frameworks to compare with future experiments and to find out the effects of
final-state interactions and SU(3) symmetry violations.Comment: 28 pages, 20 Tables in landscape form, 4 figures. Main changes are:
(i) some errors in the Tables and in the relations between the quark-diagram
amplitudes of this paper and those of Ref.[10] are corrected, (ii)
improvements are made in the presentation so that comparisons with previous
works and what have been done to include SU(3) breaking and final-state
interactions are more clearly stated; to appear in the Physical Review
Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays
Observed decay rates indicate large phase differences among the amplitudes
for the charge states in and but
relatively real amplitudes in the charge states for . This
feature is traced using an SU(3) flavor analysis to a sign flip in the
contribution of one of the amplitudes contributing to the latter processes in
comparison with its contribution to the other two sets. This amplitude may be
regarded as an effect of rescattering and is found to be of magnitude
comparable to others contributing to charmed particle two-body nonleptonic
decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.
Simple Realization Of The Fredkin Gate Using A Series Of Two-body Operators
The Fredkin three-bit gate is universal for computational logic, and is
reversible. Classically, it is impossible to do universal computation using
reversible two-bit gates only. Here we construct the Fredkin gate using a
combination of six two-body reversible (quantum) operators.Comment: Revtex 3.0, 7 pages, 3 figures appended at the end, please refer to
the comment lines at the beginning of the manuscript for reasons of
replacemen
Multi-valued Logic Gates for Quantum Computation
We develop a multi-valued logic for quantum computing for use in multi-level
quantum systems, and discuss the practical advantages of this approach for
scaling up a quantum computer. Generalizing the methods of binary quantum
logic, we establish that arbitrary unitary operations on any number of d-level
systems (d > 2) can be decomposed into logic gates that operate on only two
systems at a time. We show that such multi-valued logic gates are
experimentally feasible in the context of the linear ion trap scheme for
quantum computing. By using d levels in each ion in this scheme, we reduce the
number of ions needed for a computation by a factor of log d.Comment: Revised version; 8 pages, 3 figures; to appear in Physical Review
Flavor SU(3) symmetry and QCD factorization in and decays
Using flavor SU(3) symmetry, we perform a model-independent analysis of
charmless decays. All the relevant
topological diagrams, including the presumably subleading diagrams, such as the
QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation
ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be
important in understanding the data for penguin-dominated decay modes. In this
work we make efforts to bridge the (model-independent but less quantitative)
topological diagram or flavor SU(3) approach and the (quantitative but somewhat
model-dependent) QCD factorization (QCDF) approach in these decays, by
explicitly showing how to translate each flavor SU(3) amplitude into the
corresponding terms in the QCDF framework. After estimating each flavor SU(3)
amplitude numerically using QCDF, we discuss various physical consequences,
including SU(3) breaking effects and some useful SU(3) relations among decay
amplitudes of and .Comment: 47 pages, 3 figures, 28 table
Pd/Cu Site Interchange and Non-Fermi-Liquid Behavior in UCu_4Pd
X-ray-absorption fine-structure measurements of the local structure in
UCu_4Pd are described which indicate a probable lattice-disorder origin for
non-Fermi-liquid behavior in this material. Short Pd-Cu distances are observed,
consistent with 24 +/- 3% of the Pd atoms occupying nominally Cu sites. A
"Kondo disorder" model, based on the effect on the local Kondo temperature T_K
of this interchange and some additional bond-length disorder, agrees
quantitatively with previous experimental susceptibility data, and therefore
also with specific heat and magnetic resonance experiments.Comment: 4 pages, 3 PostScript figures, to be published in PR
Factorial Moments in a Generalized Lattice Gas Model
We construct a simple multicomponent lattice gas model in one dimension in
which each site can either be empty or occupied by at most one particle of any
one of species. Particles interact with a nearest neighbor interaction
which depends on the species involved. This model is capable of reproducing the
relations between factorial moments observed in high--energy scattering
experiments for moderate values of . The factorial moments of the negative
binomial distribution can be obtained exactly in the limit as becomes
large, and two suitable prescriptions involving randomly drawn nearest neighbor
interactions are given. These results indicate the need for considerable care
in any attempt to extract information regarding possible critical phenomena
from empirical factorial moments.Comment: 15 pages + 1 figure (appended as postscript file), REVTEX 3.0,
NORDITA preprint 93/4
Encoding a qubit in an oscillator
Quantum error-correcting codes are constructed that embed a
finite-dimensional code space in the infinite-dimensional Hilbert space of a
system described by continuous quantum variables. These codes exploit the
noncommutative geometry of phase space to protect against errors that shift the
values of the canonical variables q and p. In the setting of quantum optics,
fault-tolerant universal quantum computation can be executed on the protected
code subspace using linear optical operations, squeezing, homodyne detection,
and photon counting; however, nonlinear mode coupling is required for the
preparation of the encoded states. Finite-dimensional versions of these codes
can be constructed that protect encoded quantum information against shifts in
the amplitude or phase of a d-state system. Continuous-variable codes can be
invoked to establish lower bounds on the quantum capacity of Gaussian quantum
channels.Comment: 22 pages, 8 figures, REVTeX, title change (qudit -> qubit) requested
by Phys. Rev. A, minor correction
Angular momentum I ground state probabilities of boson systems interacting by random interactions
In this paper we report our systematic calculations of angular momentum
ground state probabilities () of boson systems with spin in the
presence of random two-body interactions. It is found that the P(0) dominance
is usually not true for a system with an odd number of bosons, while it is
valid for an even number of bosons, which indicates that the P(0) dominance is
partly connected to the even number of identical particles. It is also noticed
that the 's of bosons with spin do not follow the 1/N (,
referring to the number of independent two-body matrix elements) relation. The
properties of the 's obtained in boson systems with spin are
discussed.Comment: 8 pages and 3 figure
Four Photon Entanglement from Down Conversion
Double-pair emission from type-II parametric down conversion results in a
highly entangled 4-photon state. Due to interference, which is similar to
bunching from thermal emission, this state is not simply a product of two
pairs. The observation of this state can be achieved by splitting the two
emission modes at beam splitters and subsequent detection of a photon in each
output. Here we describe the features of this state and give a Bell theorem for
a 4-photon test of local realistic hidden variable theories.Comment: 5 pages, 1 figure, submitted to PR
- …
