1,490 research outputs found
Optical processing for landmark identification
A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced
Effective Interactions for the Three-Body Problem
The three-body energy-dependent effective interaction given by the
Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator
spaces. The results are applied to the test case of the three-body problem
(triton and He3), where it is shown that the interaction reproduces the exact
binding energy, regardless of the parameterization (number of oscillator quanta
or value of the oscillator parameter b) of the low-energy included space. We
demonstrate a non-perturbative technique for summing the excluded-space
three-body ladder diagrams, but also show that accurate results can be obtained
perturbatively by iterating the two-body ladders. We examine the evolution of
the effective two-body and induced three-body terms as b and the size of the
included space Lambda are varied, including the case of a single included
shell, Lambda hw=0 hw. For typical ranges of b, the induced effective
three-body interaction, essential for giving the exact three-body binding, is
found to contribute ~10% to the binding energy.Comment: 19 pages, 9 figures, submitted to PR
Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths
We discuss the design, fabrication, and testing of prototype horn-coupled,
lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic
microwave background (CMB) studies. The LEKIDs are made from a thin aluminum
film deposited on a silicon wafer and patterned using standard
photolithographic techniques at STAR Cryoelectronics, a commercial device
foundry. We fabricated twenty-element arrays, optimized for a spectral band
centered on 150 GHz, to test the sensitivity and yield of the devices as well
as the multiplexing scheme. We characterized the detectors in two
configurations. First, the detectors were tested in a dark environment with the
horn apertures covered, and second, the horn apertures were pointed towards a
beam-filling cryogenic blackbody load. These tests show that the multiplexing
scheme is robust and scalable, the yield across multiple LEKID arrays is 91%,
and the noise-equivalent temperatures (NET) for a 4 K optical load are in the
range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}
Recommended from our members
Electrophysiological and Psychophysical Studies of Meridional Anisotropies in Children With and Without Astigmatism.
Purpose: We investigated the pattern of meridional anisotropies, if any, for pattern onset-offset visual evoked potential (POVEPs) responses and psychophysical grating acuity (GA) in children with normal letter visual acuity (20/20 or better).
Methods: A total of 29 children (aged 3-9 years), nine of whom were astigmatic (AS), were recruited. Orientation-specific monocular POVEPs were recorded in response to sinewave grating stimuli oriented along the subjects' principal AS meridians. Horizontal and vertical gratings were designated Meridians 1 and 2, respectively, for nonastigmatic patients (Non-AS). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed monocularly and binocularly along the same meridians using the same stimuli by a 2-alternative-forced-choice staircase technique. The C3 amplitudes and peak latencies of the POVEP and GAs were compared across meridians using linear mixed models (monocular) and ANOVA (binocular).
Results: There were significant meridional anisotropies in monocular C3 amplitudes regardless of astigmatism status (P = 0.001): Meridian 2 (mean ± SE Non-AS, 30.13 ± 2.07 μV; AS, 26.53 ± 2.98 μV) was significantly higher than Meridian 1 (Non-AS, 26.14 ± 1.87 μV; AS, 21.68 ± 2.73 μV; P = 0.019), but no meridional anisotropies were found for GA or C3 latency. Binocular C3 amplitude in response to horizontally oriented stimuli (180°, 29.71 ± 3.06 μV) was significantly lower than the oblique (45°, 36.62 ± 3 .05 μV; P = 0.03 and 135°, 35.95 ± 2.92 μV; P = 0.04) and vertical (90°, 37.82 ± 3.65 μV; P = 0.02) meridians, and binocular C3 latency was significantly shorter in response to vertical than oblique gratings (P ≤ 0.001).
Conclusions: Meridional anisotropy was observed in children with normal vision. The findings suggest that horizontal gratings result in a small, but significantly lower POVEP amplitude than for vertical and oblique gratings
Multi-Pion States in Lattice QCD and the Charged-Pion Condensate
The ground-state energies of systems containing up to twelve 's in a
spatial volume V ~ (2.5 fm)^3 are computed in dynamical, mixed-action lattice
QCD at a lattice spacing of ~ 0.125 fm for four different values of the light
quark masses. Clean signals are seen for each ground state, allowing for a
precise extraction of both the scattering length and
-interaction from a correlated analysis of systems containing
different numbers of 's. This extraction of the scattering
length is consistent with than that from the -system alone. The
large number of systems studied here significantly strengthens the arguments
presented in our earlier work and unambiguously demonstrates the presence of a
low energy -interaction. The equation of state of a
gas is investigated using our numerical results and the density dependence of
the isospin chemical potential for these systems agrees well with the
theoretical expectations of leading order chiral perturbation theory. The
chemical potential is found to receive a substantial contribution from the
-interaction at the lighter pion masses. An important
technical aspect of this work is the demonstration of the necessity of
performing propagator contractions in greater than double precision to extract
the correct results.Comment: 38 pages, 20 figure
Social representations of HIV/AIDS in five Central European and Eastern European countries: A multidimensional analysis
Cognitive processing models of risky sexual behaviour have proliferated in the two decades since the first reporting of HIV/AIDS, but far less attention has been paid to individual and
group representations of the epidemic and the relationship between these representations and reported sexual behaviours. In this study, 494 business people and medics from Estonia, Georgia, Hungary, Poland and Russia sorted free associations around HIV/AIDS in a matrix completion task. Exploratory factor and multidimensional scaling analyses revealed two main dimensions (labelled ‘Sex’ and ‘Deadly disease’), with significant cultural and gender variations along both dimension scores. Possible explanations for these results are discussed in the light of growing concerns over the spread of the epidemic in this region
Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores
In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
The physics of a two-component cold fermi gas is now frequently addressed in
laboratories. Usually this is done for large samples of tens to hundreds of
thousands of particles. However, it is now possible to produce few-body systems
(1-100 particles) in very tight traps where the shell structure of the external
potential becomes important. A system of two-species fermionic cold atoms with
an attractive zero-range interaction is analogous to a simple model of nucleus
in which neutrons and protons interact only through a residual pairing
interaction. In this article, we discuss how the problem of a two-component
atomic fermi gas in a tight external trap can be mapped to the nuclear shell
model so that readily available many-body techniques in nuclear physics, such
as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the
study of these systems. We demonstrate an application of the SMMC method by
estimating the pairing correlations in a small two-component Fermi system with
moderate-to-strong short-range two-body interactions in a three-dimensional
harmonic external trapping potential.Comment: 13 pages, 3 figures. Final versio
- …
