232,540 research outputs found
Magnetic characterization and switching of Co nano-rings in current-perpendicular-to-plane configuration
We fabricated Co nano-rings incorporated in the vertical pseudo-spin-valve
nanopillar structures with deep submicron lateral sizes. It is shown that the
current-perpendicular-to-plane giant magnetoresistance can be used to
characterize a very small magnetic nano-ring effectively. Both the onion state
and the flux-closure vortex state are observed. The Co nano-rings can be
switched between the onion states as well as between onion and vortex states
not only by the external field but also by the perpendicularly injected dc
current
Light-Cone Distribution Amplitudes of Light Tensor Mesons in QCD
We present a study for two-quark light-cone distribution amplitudes for the
light tensor meson states with quantum number . Because
of the G-parity, the chiral-even two-quark light-cone distribution amplitudes
of this tensor meson are antisymmetric under the interchange of momentum
fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd
ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark
mass correction are shown. We estimate the relevant parameters, the decay
constants and , and first Gegenbauer moment , by
using the QCD sum rule method. These parameters play a central role in the
investigation of meson decaying into the tensor mesons.Comment: 18 pages, 3 Figure
Viscous effects on transonic airfoil stability and response
Viscous effects on transonic airfoil stability and response are investigated using an integral boundary layer model coupled to the inviscid XTRAN2L transonic small disturbance code. Unsteady transonic airloads required for stability analyses are computed using a pulse transfer function analysis including viscous effects. The pulse analysis provides unsteady aerodynamic forces for a wide range of reduced frequency in a single flow field computation. Nonlinear time marching aeroelastic solutions are presented which show the effects of viscosity on airfoil response behavior and flutter. Effects of amplitude on time marching responses are demonstrated. A state space aeroelastic model employing Pade approximants to describe the unsteady airloads is used to study the effects of viscosity on transonic airfoil stability. State space dynamic pressure root loci are in good overall agreement with time marching damping and frequency estimates. Parallel sets of results with and without viscous effects reveal the effects of viscosity on transonic unsteady airloads and aeroelastic characteristics of airfoils
Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems
Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors (Q) in the range 10^3<=Q<=10^5. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the ultimate mass sensitivity limits for nanomechanical resonators operating in vacuo that are imposed by a number of fundamental physical noise processes. Our analyses indicate that nanomechanical resonators offer immense potential for mass sensing—ultimately with resolution at the level of individual molecules
Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays
350 Micron Observations of Ultraluminous Infrared Galaxies at Intermediate Redshifts
We present 350micron observations of 36 ultraluminous infrared galaxies
(ULIRGs) at intermediate redshifts (0.089 <= z <= 0.926) using the
Submillimeter High Angular Resolution Camera II (SHARC-II) on the Caltech
Submillimeter Observatory (CSO). In total, 28 sources are detected at S/N >= 3,
providing the first flux measurements longward of 100micron for a statistically
significant sample of ULIRGs in the redshift range of 0.1 < z < 1.0. Combining
our 350micron flux measurements with the existing IRAS 60 and 100micron data,
we fit a single-temperature model to the spectral energy distribution (SED),
and thereby estimate dust temperatures and far-IR luminosities. Assuming an
emissivity index of beta = 1.5, we find a median dust temperature and far-IR
luminosity of Td = 42.8+-7.1K and log(Lfir/Lsolar) = 12.2+-0.5, respectively.
The far-IR/radio correlation observed in local star-forming galaxies is found
to hold for ULIRGs in the redshift range 0.1 < z < 0.5, suggesting that the
dust in these sources is predominantly heated by starbursts. We compare the
far-IR luminosities and dust temperatures derived for dusty galaxy samples at
low and high redshifts with our sample of ULIRGs at intermediate redshift. A
general Lfir-Td relation is observed, albeit with significant scatter, due to
differing selection effects and variations in dust mass and grain properties.
The relatively high dust temperatures observed for our sample compared to that
of high-z submillimeter-selected starbursts with similar far-IR luminosities
suggest that the dominant star formation in ULIRGs at moderate redshifts takes
place on smaller spatial scales than at higher redshifts.Comment: (24 pages in preprint format, 1 table, 7 figures, accepted for
publication in ApJ
Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information
Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally performed using information from gauge observations. This approach has proven to be a useful tool in planning and design for the regions where sufficient observational data are available. However, in many parts of the world where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function, then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjustment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based estimates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications in remote and high elevation areas
- …
