243,757 research outputs found
Dimensional Reduction via Noncommutative Spacetime: Bootstrap and Holography
Unlike noncommutative space, when space and time are noncommutative, it seems
necessary to modify the usual scheme of quantum mechanics. We propose in this
paper a simple generalization of the time evolution equation in quantum
mechanics to incorporate the feature of a noncommutative spacetime. This
equation is much more constraining than the usual Schr\"odinger equation in
that the spatial dimension noncommuting with time is effectively reduced to a
point in low energy. We thus call the new evolution equation the spacetime
bootstrap equation, the dimensional reduction called for by this evolution
seems close to what is required by the holographic principle. We will discuss
several examples to demonstrate this point.Comment: 15 pages, harvmac. v2: typos corrected and some changes mad
Fast computation of MadGraph amplitudes on graphics processing unit (GPU)
Continuing our previous studies on QED and QCD processes, we use the graphics
processing unit (GPU) for fast calculations of helicity amplitudes for general
Standard Model (SM) processes. Additional HEGET codes to handle all SM
interactions are introduced, as well assthe program MG2CUDA that converts
arbitrary MadGraph generated HELAS amplitudess(FORTRAN) into HEGET codes in
CUDA. We test all the codes by comparing amplitudes and cross sections for
multi-jet srocesses at the LHC associated with production of single and double
weak bosonss a top-quark pair, Higgs boson plus a weak boson or a top-quark
pair, and multisle Higgs bosons via weak-boson fusion, where all the heavy
particles are allowes to decay into light quarks and leptons with full spin
correlations. All the helicity amplitudes computed by HEGET are found to agree
with those comsuted by HELAS within the expected numerical accuracy, and the
cross sections obsained by gBASES, a GPU version of the Monte Carlo integration
program, agree wish those obtained by BASES (FORTRAN), as well as those
obtained by MadGraph. The performance of GPU was over a factor of 10 faster
than CPU for all processes except those with the highest number of jets.Comment: 37 pages, 12 figure
Property-Based Testing - The ProTest Project
The ProTest project is an FP7 STREP on property based testing. The purpose of the project is to develop software engineering approaches to improve reliability of service-oriented networks; support fault-finding and diagnosis based on specified properties of the system. And to do so we will build automated tools that will generate and run tests, monitor execution at run-time, and log events for analysis.
The Erlang / Open Telecom Platform has been chosen as our initial implementation vehicle due to its robustness and reliability within the telecoms sector. It is noted for its success in the ATM telecoms switches by Ericsson, one of the project partners, as well as for multiple other uses such as in facebook, yahoo etc. In this paper we provide an overview of the project goals, as well as detailing initial progress in developing property based testing techniques and tools for the concurrent functional programming language Erlang
Ten Dimensional Black Hole and the D0-brane Threshold Bound State
We discuss the ten dimensional black holes made of D0-branes in the regime
where the effective coupling is large, and yet the 11D geometry is unimportant.
We suggest that these black holes can be interpreted as excitations over the
threshold bound state. Thus, the entropy formula for the former is used to
predict a scaling region of the wave function of the latter. The horizon radius
and the mass gap predicted in this picture agree with the formulas derived from
the classical geometry.Comment: 11 pages, harvmac; v2: typos corrected, argument for the convergence
of two integrals improved, v3: one ref. adde
Shot noise spectrum of superradiant entangled excitons
The shot noise produced by tunneling of electrons and holes into a double dot
system incorporated inside a p-i-n junction is investigated theoretically. The
enhancement of the shot noise is shown to originate from the entangled
electron-hole pair created by superradiance. The analogy to the superconducting
cooper pair box is pointed out. A series of Zeno-like measurements is shown to
destroy the entanglement, except for the case of maximum entanglement.Comment: 5 pages, 3 figures, to appear in Phys. Rev. B (2004
Ac conductivity and dielectric properties of CuFe1−xCrxO2 : Mg delafossite
The electrical and dielectric properties of CuFe(1−x)Cr(x)O(2) (0 ≤ x ≤ 1) powders, doped with 3% of Mg and prepared by solid-state reaction, were studied by broadband dielectric spectroscopy in the temperature range from −100 to 150 °C. The frequency-dependent electrical and dielectric data have been discussed in the framework of a power law conductivity and complex impedance and dielectric modulus. At room temperature, the ac conductivity behaviour is characteristic of the charge transport in CuFe1−xCrxO2 powders. The substitution of Fe3+ by Cr3+ results in an increase in dc conductivity and a decrease in the Cu+–Cu+ distance. Dc conductivity, characteristic onset frequency and Havriliak–Negami characteristics relaxation times are thermally activated above −40 °C for x = 0.835. The associated activation energies obtained from dc and ac conductivity and from impedance and modulus losses are similar and show that CuFe1−xCrxO2 delafossite powders satisfy the BNN relation. Dc and ac conductivities have the same transport mechanism, namely thermally activated nearest neighbour hopping and tunnelling hopping above and below −40 °C, respectively
- …
