303,763 research outputs found

    Unified results of several analytical and experimental studies of helicopter handling qualities in visual terrain flight

    Get PDF
    The studies were undertaken to investigate the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation on the flying qualities of helicopters performing low-level, terrain-flying tasks in visual meteorological conditions. Some unified results are presented, and the validity and limitations of the flying-qualities data obtained are interpreted. Selected results, related to various design parameters, provide guidelines for the preliminary design of rotor systems and aircraft augmentation systems

    A summary of rotorcraft handling qualities research at NASA Ames Research Center

    Get PDF
    The objectives of the rotorcraft handling qualities research program at Ames Research Center are twofold: (1) to develop basic handling qualities design criteria to permit cost effective design decisions to be made for helicopters, and (2) to obtain basic handling qualities data for certification of new rotorcraft configurations. The research on the helicopter handling qualities criteria has focused primarily on military nap-of-the-earth (NOE) terrain flying missions, which are flown in day visual meteorological conditions (VMC) and instrument meteorological conditions (IMC), or at night. The Army has recently placed a great deal of emphasis on terrain flying tactics in order to survive and effectively complete the missions in modern and future combat environments. Unfortunately, the existing Military Specification MIL-H 8501A which is a 1961 update of a 1951 document, does not address the handling qualities requirements for terrain flying. The research effort is therefore aimed at filling the void and is being conducted jointly with the Army Aeromechanics Laboratory at Ames. The research on rotorcraft airworthiness standards with respect to flying qualities requirements was conducted to collaboration with the Federal Aviation Administration (FAA)

    The gain and carrier density in semiconductor lasers under steady-state and transient conditions

    Get PDF
    The carrier distribution functions in a semiconductor crystal in the presence of a strong optical field are obtained. These are used to derive expressions for the gain dependence on the carrier density and on the optical intensity-the gain suppression effect. A general expression for high-order nonlinear gain coefficients is obtained. This formalism is used to describe the carrier and power dynamics in semiconductor lasers above and below threshold in the static and transient regimes

    High efficiency single quantum well graded-index separate-confinement heterostructure lasers fabricated with MeV oxygen ion implantation

    Get PDF
    Single quantum well AlGaAs/GaAs graded-index separate-confinement heterostructure lasers have been fabricated using MeV oxygen ion implantation plus optimized subsequent thermal annealing. A high differential quantum efficiency of 85% has been obtained in a 360-µm-long and 10-µm-wide stripe geometry device. The results have also demonstrated that excellent electrical isolation (breakdown voltage of over 30 V) and low threshold currents (22 mA) can be obtained with MeV oxygen ion isolation. It is suggested that oxygen ion implantation induced selective carrier compensation and compositional disordering in the quantum well region as well as radiation-induced lattice disordering in AlxGa1–xAs/GaAs may be mostly responsible for the buried layer modification in this fabrication process

    Analytical and flight investigation of the influence of rotor and other high-order dynamics on helicopter flight-control system bandwidth

    Get PDF
    The increasing use of highly augmented digital flight-control systems in modern military helicopters prompted an examination of the influence of rotor dynamics and other high-order dynamics on control-system performance. A study was conducted at NASA Ames Research Center to correlate theoretical predictions of feedback gain limits in the roll axis with experimental test data obtained from a variable-stability research helicopter. Feedback gains, the break frequency of the presampling sensor filter, and the computational frame time of the flight computer were systematically varied. The results, which showed excellent theoretical and experimental correlation, indicate that the rotor-dynamics, sensor-filter, and digital-data processing delays can severely limit the usable values of the roll-rate and roll-attitude feedback gains

    Enhancement of Pairing Correlation by t' in the Two-Dimensional Extende d t-J Model

    Full text link
    We investigate the effects of the next-nearest-neighbor (tt') and the third-nearest-neighbor (t") hopping terms on superconductivity (SC) correlation in the 2D hole-doped extended t-J model based on the variational Monte-Carlo (VMC), mean-field (MF) calculation, and exact diagonalization (ED) method. Despite of the diversity of the methods employed, the results all point to a consistent conclusion: While the d-wave SC correlation is slightly suppressed by t' and t" in underdoped regions, it is greatly enhanced in the optimal and overdoped regions. The optimal T_c is a result upon balance of these two opposite trends.Comment: 5 figures, submitted to Phys. Rev. Let

    Domain-Wall Induced Quark Masses in Topologically-Nontrivial Background

    Get PDF
    In the domain-wall formulation of chiral fermion, the finite separation between domain-walls (LsL_s) induces an effective quark mass (meffm_{\rm eff}) which complicates the chiral limit. In this work, we study the size of the effective mass as the function of LsL_s and the domain-wall height m0m_0 by calculating the smallest eigenvalue of the hermitian domain-wall Dirac operator in the topologically-nontrivial background fields. We find that, just like in the free case, meffm_{\rm eff} decreases exponentially in LsL_s with a rate depending on m0m_0. However, quantum fluctuations amplify the wall effects significantly. Our numerical result is consistent with a previous study of the effective mass from the Gell-Mann-Oakes-Renner relation.Comment: 10 pages, an appendix and minor changes adde
    corecore