119,376 research outputs found
Some one dimensional solutions of nonlinear waves of a rate sensitive, elastoplastic material Technical report, 1 Sep. 1967 - 31 Aug. 1972
One dimensional solution of nonlinear waves of rate sensitive, elastoplastic materia
Organic chemistry on Titan
Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter
A Modified Optical Potential Approach to Low-energy Electron-helium Scattering
Optical potential approach to low energy electron- helium scatterin
Modern CFD applications for the design of a reacting shear layer facility
The RPLUS2D code, capable of calculating high speed reacting flows, was adopted to design a compressible shear layer facility. In order to create reacting shear layers at high convective Mach numbers, hot air streams at supersonic speeds, rendered by converging-diverging nozzles, must be provided. A finite rate chemistry model is used to simulate the nozzle flows. Results are compared with one-dimensional solutions at chemical equilibrium. Additionally, a two equation turbulence model with compressibility effects was successfully incorporated with the RPLUS code. The model was applied to simulate a supersonic shear layer. Preliminary results show favorable comparisons with the experimental data
Exotic-Hadron Signature by Constituent-Counting Rule in Perturbative QCD
We explain a method to find internal quark configurations of exotic hadron
candidates by using the constituent counting rule. The counting rule was
theoretically predicted in perturbative QCD for hard exclusive hadron
reactions, and it has been tested in experiments for stable hadrons including
compound systems of hadrons such as the deuteron, H, and He. It
indicates that the cross section scales as , where
is the center-of-mass energy squared and is the total number of
constituents. We apply this method for finding internal configurations of
exotic hadron candidates, especially . There is a possibility
that could be five-quark state or a molecule, and
scaling properties should be different between the ordinary three-quark state
or five-quark one. We predict such a difference in , and it could be experimentally tested, for example, at J-PARC. On the
other hand, there are already measurements for as well as the ground in photoproduction reactions. Analyzing
such data, we found an interesting indication that looks like
a five-quark state at medium energies and a three-quark one at high energies.
However, accurate higher-energy measurements are necessary for drawing a solid
conclusion, and it should be done at JLab by using the updated 12 GeV electron
beam. Furthermore, we discuss studies of exotic hadron candidates, such as and , in electron-positron annihilation by using generalized
distribution amplitudes and the counting rule. These studies should be possible
as a KEKB experiment.Comment: 6 pages, LaTeX, 10 eps files, to be published in JPS Conf. Proc.,
Proceedings of the 14th International Conference on Meson-Nucleon Physics and
the Structure of the Nucleon (MENU2016), July 25-30, 2016, Kyoto, Japa
Deep Learning Based Vehicle Make-Model Classification
This paper studies the problems of vehicle make & model classification. Some
of the main challenges are reaching high classification accuracy and reducing
the annotation time of the images. To address these problems, we have created a
fine-grained database using online vehicle marketplaces of Turkey. A pipeline
is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN
(Convolutional Neural Network) model to train on the database. In the pipeline,
we first detect the vehicles by following an algorithm which reduces the time
for annotation. Then, we feed them into the CNN model. It is reached
approximately 4% better classification accuracy result than using a
conventional CNN model. Next, we propose to use the detected vehicles as ground
truth bounding box (GTBB) of the images and feed them into an SSD model in
another pipeline. At this stage, it is reached reasonable classification
accuracy result without using perfectly shaped GTBB. Lastly, an application is
implemented in a use case by using our proposed pipelines. It detects the
unauthorized vehicles by comparing their license plate numbers and make &
models. It is assumed that license plates are readable.Comment: 10 pages, ICANN 2018: Artificial Neural Networks and Machine Learnin
Detailed gravimetric geoid confirmation of short wavelength features of sea surface topography detected by the Skylab S-193 altimeter in the Atlantic Ocean
A detailed gravimetric geoid was computed for the Northwest Atlantic Ocean and Caribbean Sea area in support of the calibration and evaluation of the GEOS-C altimeter. This geoid, computed on a 15 ft. x 15 ft. grid was based upon a combination of surface gravity data with the GSFC GEM-6 satellite derived gravity data. A comparison of this gravimetric geoid with 10 passes of SKYLAB altimeter data is presented. The agreement of the two data types is quite good with the differences generally less than 2 meters. Sea surface manifestations of numerous short wavelength (approximately 100 km) oceanographic features are now indicated in the gravimetric geoid and are also confirmed by the altimetry data
- …
