8,979 research outputs found
Semi-classical open string corrections and symmetric Wilson loops
In the AdS/CFT correspondence, an AdS_2 x S^2 D3-brane with electric flux in
AdS_5 x S^5 spacetime corresponds to a circular Wilson loop in the symmetric
representation or a multiply wound one in N=4 super Yang-Mills theory. In order
to distinguish the symmetric loop and the multiply wound loop, one should see
an exponentially small correction in large 't Hooft coupling. We study
semi-classically the disk open string attached to the D3-brane. We obtain the
exponent of the term and it agrees with the result of the matrix model
calculation of the symmetric Wilson loop.Comment: 14 pages, 4 figures. v2: explanation improved. v3: argument in
section 2 is improved, result not change
Aperture excited dielectric antennas
The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading
Electromagnetic modes of Maxwell fisheye lens
We provide an analysis of the radial structure of TE and TM modes of the
Maxwell fisheye lens, by means of Maxwell equations as applied to the fisheye
case. Choosing a lens of size R = 1 cm, we plot some of the modes in the
infrared range.Comment: 2+6 pages in Latex, 3 figures to be found in the published referenc
Dynamical coupled-channel model of kaon-hyperon interactions
The pi N --> KY and KY --> KY reactions are studied using a dynamical
coupled-channel model of meson-baryon interactions at energies where the baryon
resonances are strongly excited. The channels included are: pi N, K \Lambda,
and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710),
P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910),
P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660),
D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY
transition potentials are derived from effective Lagrangians using a unitary
transformation method. The dynamical coupled-channel equations are simplified
by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N
partial-wave amplitudes and a phenomenological off-shell function. Two models
have been constructed. Model A is built by fixing all coupling constants and
resonance parameters using SU(3) symmetry, the Particle Data Group values, and
results from a constituent quark model. Model B is obtained by allowing most of
the parameters to vary around the values of model A in fitting the data. Good
fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been
achieved. The investigated kinematics region in the center-of-mass frame goes
from threshold to 2.5 GeV. The constructed models can be imbedded into
associated dynamical coupled-channel studies of kaon photo- and
electro-production reactions.Comment: 35 pages, 11 Figure
PT-Symmetric Quantum Theory Defined in a Krein Space
We provide a mathematical framework for PT-symmetric quantum theory, which is
applicable irrespective of whether a system is defined on R or a complex
contour, whether PT symmetry is unbroken, and so on. The linear space in which
PT-symmetric quantum theory is naturally defined is a Krein space constructed
by introducing an indefinite metric into a Hilbert space composed of square
integrable complex functions in a complex contour. We show that in this Krein
space every PT-symmetric operator is P-Hermitian if and only if it has
transposition symmetry as well, from which the characteristic properties of the
PT-symmetric Hamiltonians found in the literature follow. Some possible ways to
construct physical theories are discussed within the restriction to the class
K(H).Comment: 8 pages, no figures; Refs. added, minor revisio
Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation
In order to increase the accelerating gradient of Superconducting Radio
Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of
its high transition temperature and potential for low surface resistance in the
high RF field regime. However, due to the presence of the small superconducting
gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite
large compared to a single gap s-wave superconductor (SC) such as Nb.
Understanding the mechanisms of nonlinearity coming from the two-band structure
of MgB2, as well as extrinsic sources, is an urgent requirement. A localized
and strong RF magnetic field, created by a magnetic write head, is integrated
into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2
films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor
deposition technique on dielectric substrates, are measured at a fixed location
and show a strongly temperature-dependent third harmonic response. We propose
that at least two mechanisms are responsible for this nonlinear response, one
of which involves vortex nucleation and penetration into the film. [1] T. M.
Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field
Microwave Microscope for RF Defect Localization in Superconductors", IEEE
Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure
Pattern formation and selection in quasi-static fracture
Fracture in quasi-statically driven systems is studied by means of a discrete
spring-block model. Developed from close comparison with desiccation
experiments, it describes crack formation induced by friction on a substrate.
The model produces cellular, hierarchical patterns of cracks, characterized by
a mean fragment size linear in the layer thickness, in agreement with
experiments. The selection of a stationary fragment size is explained by
exploiting the correlations prior to cracking. A scaling behavior associated
with the thickness and substrate coupling, derived and confirmed by
simulations, suggests why patterns have similar morphology despite their
disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include
- …
