84,110 research outputs found
Polar sea ice observations by means of microwave radiometry
Principles pertinent to the utilization of 1.55 cm wavelength radiation emanating from the surface of the earth for studying the changing characteristics of polar sea ice are briefly reviewed. Recent data obtained at that wavelength with an imaging radiometer on-board the Nimbus 5 satellite are used to illustrate how the seasonal changes in extent of sea ice in both polar regions may be monitored free of atmospheric interference. Within a season, changes in the compactness of the sea ice are also observed from the satellite. Some substantial areas of the Arctic sea ice canopy identified as first-year ice in the past winter were observed not to melt this summer, a graphic illustration of the eventual formation of multiyear ice in the Arctic. Finally, the microwave emissivity of some of the multiyear ice areas near the North Pole was found to increase significantly in the summer, probably due to liquid water content in the firm layer
Application of Nimbus-6 microwave data to problems in precipitation prediction for the Pacific west coast
The preliminary results of a research study that emphasizes the analysis and interpretation of data related to total precipitable water and nonprecipitating cloud liquid water obtained from NIMBUS-6 SCAMS are reported. Sixteen cyclonic storm situations in the northeastern Pacific Ocean that resulted in significant rainfall along the west coast of the United States during the winter season October 1975 through February 1976 are analyzed in terms of their distributions and amounts of total water vapor and liquid water, as obtained from SCAMS data. The water-substance analyses for each storm case are related to the distribution and amount of coastal precipitation observed during the subsequent time period when the storm system crosses the coastline. Concomitant precipitation predictions from the LFM are also incorporated. Techniques by which satellite microwave data over the ocean can be used to improve precipitation prediction for the Pacific West Coast are emphasized
Laboratory simulation of the Mars atmosphere. A feasibility study
Feasibility of simulation of Martian atmospheric processes - atmospheric transportation and deposition of dust and sand, absorption properties, and thermodynamic propertie
Recommended from our members
Study of quasi-distributed optical fiber methane sensors based on laser absorption spectrometry
The coal industry plays an important role in the economic development of China. With the increase of coal mining year by year, coal mine accidents caused by gas explosion also occur frequently, which poses a serious threat to the life safety of absenteeism and national property safety. Therefore, high-precision methane fiber sensor is of great significance to ensure coal mine safety. This paper mainly introduces two kinds of quasi-distributed gas optical fiber sensing systems based on laser absorption spectroscopy. The gas fiber optic sensor based on absorption spectrum has high measurement accuracy, fast response and long service life. One is quasi-distributed optical fiber sensing system based on spatial division multiplexing (SDM) technology and the other is quasi-distributed optical fiber sensing system based on optical time domain reflection and time division multiplexing(TDM) technology
Deep Learning Based Vehicle Make-Model Classification
This paper studies the problems of vehicle make & model classification. Some
of the main challenges are reaching high classification accuracy and reducing
the annotation time of the images. To address these problems, we have created a
fine-grained database using online vehicle marketplaces of Turkey. A pipeline
is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN
(Convolutional Neural Network) model to train on the database. In the pipeline,
we first detect the vehicles by following an algorithm which reduces the time
for annotation. Then, we feed them into the CNN model. It is reached
approximately 4% better classification accuracy result than using a
conventional CNN model. Next, we propose to use the detected vehicles as ground
truth bounding box (GTBB) of the images and feed them into an SSD model in
another pipeline. At this stage, it is reached reasonable classification
accuracy result without using perfectly shaped GTBB. Lastly, an application is
implemented in a use case by using our proposed pipelines. It detects the
unauthorized vehicles by comparing their license plate numbers and make &
models. It is assumed that license plates are readable.Comment: 10 pages, ICANN 2018: Artificial Neural Networks and Machine Learnin
Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions
We calculate the partition function of the -state Potts model
exactly for strips of the square and triangular lattices of various widths
and arbitrarily great lengths , with a variety of boundary
conditions, and with and restricted to satisfy conditions corresponding
to the ferromagnetic phase transition on the associated two-dimensional
lattices. From these calculations, in the limit , we determine
the continuous accumulation loci of the partition function zeros in
the and planes. Strips of the honeycomb lattice are also considered. We
discuss some general features of these loci.Comment: 12 pages, 12 figure
Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene
From the perspective of bond relaxation and vibration, we have reconciled the
Raman shifts of graphene under the stimuli of the number-of-layer,
uni-axial-strain, pressure, and temperature in terms of the response of the
length and strength of the representative bond of the entire specimen to the
applied stimuli. Theoretical unification of the measurements clarifies that:
(i) the opposite trends of Raman shifts due to number-of-layer reduction
indicate that the G-peak shift is dominated by the vibration of a pair of atoms
while the D- and the 2D-peak shifts involves z-neighbor of a specific atom;
(ii) the tensile strain-induced phonon softening and phonon-band splitting
arise from the asymmetric response of the C3v bond geometry to the C2v
uni-axial bond elongation; (iii) the thermal-softening of the phonons
originates from bond expansion and weakening; and (iv) the pressure- stiffening
of the phonons results from bond compression and work hardening. Reproduction
of the measurements has led to quantitative information about the referential
frequencies from which the Raman frequencies shift, the length, energy, force
constant, Debye temperature, compressibility, elastic modulus of the C-C bond
in graphene, which is of instrumental importance to the understanding of the
unusual behavior of graphene
Ultimate intrinsic-coercivity samarium-cobalt magnet: An Earth-based feasibility study for space-shuttle missions
Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent
- …
