73,840 research outputs found
Effect of thermodynamics on ion mixing
Ion mixing of elemental 4d-5d metallic bilayers at 77 K by 600 keV Xe + + ions has been studied to test the validity of the phenomenological model of ion mixing that predicts a dependence on the chemical heats of mixing, DeltaHmix, and on the cohesive energies, DeltaHcoh, of the bilayer elements. A series of samples was chosen to minimize the variation in kinematical properties between samples while maximizing the variation in heats of mixing. The experimental results agree well with the model's predictions, and the experimentally determined constants K1=0.034 Å and K2=27 agree with those of previous work
Average-Atom Model for X-ray Scattering from Warm Dense Matter
A scheme for analyzing Thomson scattering of x-rays by warm dense matter,
based on the average-atom model, is developed. Emphasis is given to x-ray
scattering by bound electrons. Contributions to the scattered x-ray spectrum
from elastic scattering by electrons moving with the ions and from inelastic
scattering by free and bound electrons are evaluated using parameters (chemical
potential, average ionic charge, free electron density, bound and continuum
wave functions, and occupation numbers) taken from the average-atom model. The
resulting scheme provides a relatively simple diagnostic for use in connection
with x-ray scattering measurements. Applications are given to dense hydrogen,
beryllium, aluminum, titanium, and tin plasmas. At high momentum transfer,
contributions from inelastic scattering by bound electrons are dominant
features of the scattered x-ray spectrum for aluminum, titanium, and tin.Comment: 22 pages, 10 figures Presentation at Workshop IV: Computational
Challenges in Warm Dense Matter at IPAM (UCLA) May 21 - 25, 201
Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas
For the last decade numerous researchers have been trying to develop
experimental techniques to use X-ray Thomson scattering as a method to measure
the temperature, electron density, and ionization state of high energy density
plasmas such as those used in inertial confinement fusion. With the advent of
the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source
(LCLS) we now have such a source available in the keV regime. One challenge
with X-ray Thomson scattering experiments is understanding how to model the
scattering for partially ionized plasmas. Most Thomson scattering codes used to
model experimental data greatly simplify or neglect the contributions of the
bound electrons to the scattered intensity. In this work we take the existing
models of Thomson scattering that include elastic ion-ion scattering and the
electron-electron plasmon scattering and add the contribution of the bound
electrons in the partially ionized plasmas. Except for hydrogen plasmas almost
every plasma that is studied today has bound electrons and it is important to
understand their contribution to the Thomson scattering, especially as new
X-ray sources such as the X-FEL will allow us to study much higher Z plasmas.
Currently most experiments have looked at hydrogen or beryllium. We will first
look at the bound electron contributions to beryllium by analysing existing
experimental data. We then consider several higher Z materials such as Cr and
predict the existence of additional peaks in the scattering spectrum that
requires new computational tools to understand. For a Sn plasma we show that
the bound contributions changes the shape of the scattered spectrum in a way
that would change the plasma temperature and density inferred by the
experiment.Comment: 13th International Conference on X-ray Lasers Paris, France June 10,
2012 through June 15, 201
Correlation between the cohesive energy and the onset of radiation-enhanced diffusion in ion mixing
A correlation between the cohesive energy of elemental solids and the characteristic temperature Tc for the onset of radiation-enhanced diffusion during ion mixing is established. This correlation enables one to predict the onset of radiation-enhanced diffusion for systems which have not yet been investigated. A theoretical argument based on the current models of cascade mixing and radiation-enhanced diffusion is provided as a basis for understanding this observation
Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames
Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models
Correlation between cohesive energy and mixing rate in ion mixing of metallic bilayers
We have compared the mixing rate of several 5d-4d metal bilayers which form ideal solutions. We observe a strong correlation between the mixing rate and the average cohesive energy of each bilayer. A model based on the thermal spike concept is proposed to explain this behavior. The model leads to a general expression describing mixing rates in metallic bilayers
- …
