382,149 research outputs found
Isotopic Equivalence from Bezier Curve Subdivision
We prove that the control polygon of a Bezier curve B becomes homeomorphic
and ambient isotopic to B via subdivision, and we provide closed-form formulas
to compute the number of iterations to ensure these topological
characteristics. We first show that the exterior angles of control polygons
converge exponentially to zero under subdivision.Comment: arXiv admin note: substantial text overlap with arXiv:1211.035
Flux rope proxies and fan-spine structures in active region NOAA 11897
Employing the high-resolution observations from the Solar Dynamics
Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we
statistically investigate flux rope proxies in NOAA AR 11897 from 14-Nov-2013
to 19-Nov-2013 and display two fan-spine structures in this AR. For the first
time, we detect flux rope proxies of NOAA 11897 for total 30 times in 4
different locations. These flux rope proxies were either tracked in both lower
and higher temperature wavelengths or only detected in hot channels. Specially,
none of these flux rope proxies was observed to erupt, but just faded away
gradually. In addition to these flux rope proxies, we firstly detect a
secondary fan-spine structure. It was covered by dome-shaped magnetic fields
which belong to a larger fan-spine topology. These new observations imply that
considerable amounts of flux ropes can exist in an AR and the complexity of AR
magnetic configuration is far beyond our imagination.Comment: 8 pages, 8 figures, Accepted for publication in A&
A Two-Tiered Correlation of Dark Matter with Missing Transverse Energy: Reconstructing the Lightest Supersymmetric Particle Mass at the LHC
We suggest that non-trivial correlations between the dark matter particle
mass and collider based probes of missing transverse energy H_T^miss may
facilitate a two tiered approach to the initial discovery of supersymmetry and
the subsequent reconstruction of the LSP mass at the LHC. These correlations
are demonstrated via extensive Monte Carlo simulation of seventeen benchmark
models, each sampled at five distinct LHC center-of-mass beam energies,
spanning the parameter space of No-Scale F-SU(5).This construction is defined
in turn by the union of the Flipped SU(5) Grand Unified Theory, two pairs of
hypothetical TeV scale vector-like supersymmetric multiplets with origins in
F-theory, and the dynamically established boundary conditions of No-Scale
Supergravity. In addition, we consider a control sample comprised of a standard
minimal Supergravity benchmark point. Led by a striking similarity between the
H_T^miss distribution and the familiar power spectrum of a black body radiator
at various temperatures, we implement a broad empirical fit of our simulation
against a Poisson distribution ansatz. We advance the resulting fit as a
theoretical blueprint for deducing the mass of the LSP, utilizing only the
missing transverse energy in a statistical sampling of >= 9 jet events.
Cumulative uncertainties central to the method subsist at a satisfactory 12-15%
level. The fact that supersymmetric particle spectrum of No-Scale F-SU(5) has
thrived the withering onslaught of early LHC data that is steadily decimating
the Constrained Minimal Supersymmetric Standard Model and minimal Supergravity
parameter spaces is a prime motivation for augmenting more conventional LSP
search methodologies with the presently proposed alternative.Comment: JHEP version, 17 pages, 9 Figures, 2 Table
Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24
Solar active region (AR) 12673 in 2017 September produced two largest flares
in Solar Cycle 24: the X9.3 flare on September 06 and the X8.2 flare on
September 10. We attempt to investigate the evolutions of the two great flares
and their associated complex magnetic system in detail. Aided by the NLFFF
modeling, we identify a double-decker flux rope configuration above the
polarity inversion line (PIL) in the AR core region. The north ends of these
two flux ropes were rooted in a negative- polarity magnetic patch, which began
to move along the PIL and rotate anticlockwise before the X9.3 flare on
September 06. The strong shearing motion and rotation contributed to the
destabilization of the two magnetic flux ropes, of which the upper one
subsequently erupted upward due to the kink-instability. Then another two sets
of twisted loop bundles beside these ropes were disturbed and successively
erupted within 5 minutes like a chain reaction. Similarly, multiple ejecta
components were detected to consecutively erupt during the X8.2 flare occurring
in the same AR on September 10. We examine the evolution of the AR magnetic
fields from September 03 to 06 and find that five dipoles emerged successively
at the east of the main sunspot. The interactions between these dipoles took
place continuously, accompanied by magnetic flux cancellations and strong
shearing motions. In AR 12673, significant flux emergence and successive
interactions between the different emerging dipoles resulted in a complex
magnetic system, accompanied by the formations of multiple flux ropes and
twisted loop bundles. We propose that the eruptions of a multi-flux-rope system
resulted in the two largest flares in Solar Cycle 24.Comment: 10 pages, 8 figures. To be published in A&
Highlights of the TEXONO Research Program on Neutrino and Astroparticle Physics
This article reviews the research program and efforts for the TEXONO
Collaboration on neutrino and astro-particle physics. The ``flagship'' program
is on reactor-based neutrino physics at the Kuo-Sheng (KS) Power Plant in
Taiwan. A limit on the neutrino magnetic moment of \munuebar < 1.3 X 10^{-10}
\mub} at 90% confidence level was derived from measurements with a high purity
germanium detector. Other physics topics at KS, as well as the various R&D
program, are discussedComment: 10 pages, 9 figures, Proceedings of the International Symposium on
Neutrino and Dark Matter in Nuclear Physics (NDM03), Nara, Japan, June 9-14,
200
- …
