40,277 research outputs found

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    A preliminary model for diffusion between concentric hemispheres was adapted to the cylindrical geometry of a microgravity nucleation apparatus, and extended to include the effects of radiation and conduction through the containment walls. Computer programs were developed to calculate first the temperature distribution and then the evolving concentration field using a finite difference formulation of the transient diffusion and radiation processes. The following estimations are made: (1) it takes approximately 35 minutes to establish a steady temperature field; (2) magnesium vapors released into the argon environment at the steady temperature distribution will reach a maximum supersaturation ratio of approximately 10,000 in the 20-second period at a distance of 15 cm from the source of vapors; and (3) approximately 750W electrical power will be required to maintain steady operating temperatures within the chamber

    Computer program for optical systems ray tracing

    Get PDF
    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided

    Dominance in the Monty Hall Problem

    Get PDF
    Elementary decision-theoretic analysis of the Monty Hall dilemma shows that the problem has dominance. This makes possible to discard nonswitching strategies, without making any assumptions on the prior distribution of factors out of control of the decision maker. A path to the Bayesian and the minimax decision-making environments is then straightforward.Comment: http://www.springerlink.com/content/8402812734520774/fulltext.pd

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    Researchers at NASA Goddard Space Flight Center have embarked on a program to study the formation and growth of cosmic grains. This includes experiments on the homogeneous nucleation of refractory vapors of materials such as magnesium, lead, tin, and silicon oxides. As part of this program, the Chemical Engineering Department of the University of Virginia has undertaken to develop a math model for these experiments, to assist in the design and construction of the apparatus, and to analyze the data once the experiments have begun. Status Reports 1 and 2 addressed the design of the apparatus and the development of math models for temperature and concentration fields. The bulk of this report discusses the continued refinement of these models, and the assembly and testing of the nucleation chamber along with its ancillary equipment, which began in the spring of 1988

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    This project is a part of a program at GSFC to study to formation and growth of cosmic dust grain analogs under terrestrial as well as microgravity conditions. Its primary scientific objective is to study the homogeneous nucleation of refractory metal vapors and a variety of their oxides among others, while the engineering, and perhaps a more immediate objective is to develop a system capable of producing mono-dispersed, homogeneous suspensions of well-characterized refractory particles for various particle interaction experiments aboard the Space Shuttle and Space Station Freedom. Both of these objectives are to be met by a judicious combination of laboratory experiments on the ground and aboard NASA's KC-135 experimental research aircraft. Major effort during the current reporting period was devoted to the evaluation of our very successful first series of microgravity test runs in Feb. 1990. Although the apparatus performed well, it was decided to 'repackage' the equipment for easier installation on the KC-135 and access to various components. It will now consist of three separate racks: one each for the nucleation chamber, the power subsystem, and the electronic packages. The racks were fabricated at the University of Virginia and the assembly of the repackaged units is proceeding well. Preliminary analysis of the video data from the first microgravity flight series was performed and the results appear to display some trends expected from Hale's Scaled Nucleation Theory of 1986. The data acquisition system is currently being refined

    Field Driven Thermostated System : A Non-Linear Multi-Baker Map

    Get PDF
    In this paper, we discuss a simple model for a field driven, thermostated random walk that is constructed by a suitable generalization of a multi-baker map. The map is a usual multi-baker, but perturbed by a thermostated external field that has many of the properties of the fields used in systems with Gaussian thermostats. For small values of the driving field, the map is hyperbolic and has a unique SRB measure that we solve analytically to first order in the field parameter. We then compute the positive and negative Lyapunov exponents to second order and discuss their relation to the transport properties. For higher values of the parameter, this system becomes non-hyperbolic and posseses an attractive fixed point.Comment: 6 pages + 5 figures, to appear in Phys. Rev.
    corecore