980 research outputs found
Detection of X-ray galaxy clusters based on the Kolmogorov method
The detection of clusters of galaxies in large surveys plays an important
part in extragalactic astronomy, and particularly in cosmology, since cluster
counts can give strong constraints on cosmological parameters. X-ray imaging is
in particular a reliable means to discover new clusters, and large X-ray
surveys are now available. Considering XMM-Newton data for a sample of 40 Abell
clusters, we show that their analysis with a Kolmogorov distribution can
provide a distinctive signature for galaxy clusters. The Kolmogorov method is
sensitive to the correlations in the cluster X-ray properties and can therefore
be used for their identification, thus allowing to search reliably for clusters
in a simple way
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
Quadratic Lagrangians and Topology in Gauge Theory Gravity
We consider topological contributions to the action integral in a gauge
theory formulation of gravity. Two topological invariants are found and are
shown to arise from the scalar and pseudoscalar parts of a single integral.
Neither of these action integrals contribute to the classical field equations.
An identity is found for the invariants that is valid for non-symmetric Riemann
tensors, generalizing the usual GR expression for the topological invariants.
The link with Yang-Mills instantons in Euclidean gravity is also explored. Ten
independent quadratic terms are constructed from the Riemann tensor, and the
topological invariants reduce these to eight possible independent terms for a
quadratic Lagrangian. The resulting field equations for the parity
non-violating terms are presented. Our derivations of these results are
considerably simpler that those found in the literature
The Infinite Design of Creative Self-Leadership
The purpose of my Master’s of Science in Creativity and Change Leadership Project is to develop a Scope and Sequence for a Creative Self-Leadership course, providing participants with a structured framework for intentional personal growth and leadership development. The Infinite Design of Creative Self-Leadership serves as an individualized framework for influencing our human experience deliberately. Throughout this project, the core idea remains consistent: to teach creativity as a transferable skill with applications beyond traditional educational settings. The culmination of this endeavor will result in a comprehensive Scope & Sequence for The Infinite Design Creative Self-Leadership Course, offering participants a solid foundation for their ongoing journey in self-leadership. This structured approach ensures a dynamic and participant-focused learning experience, empowering individuals to cultivate creativity and leadership skills in various aspects of their lives
All-sky convolution for polarimetry experiments
We discuss all-sky convolution of the instrument beam with the sky signal in
polarimetry experiments, such as the Planck mission which will map the
temperature anisotropy and polarization of the cosmic microwave background
(CMB). To account properly for stray light (from e.g. the galaxy, sun, and
planets) in the far side-lobes of such an experiment, it is necessary to
perform the beam convolution over the full sky. We discuss this process in
multipole space for an arbitrary beam response, fully including the effects of
beam asymmetry and cross-polarization. The form of the convolution in multipole
space is such that the Wandelt-Gorski fast technique for all-sky convolution of
scalar signals (e.g. temperature) can be applied with little modification. We
further show that for the special case of a pure co-polarized, axisymmetric
beam the effect of the convolution can be described by spin-weighted window
functions. In the limits of a small angle beam and large Legendre multipoles,
the spin-weight 2 window function for the linear polarization reduces to the
usual scalar window function used in previous analyses of beam effects in CMB
polarimetry experiments. While we focus on the example of polarimetry
experiments in the context of CMB studies, we emphasise that the formalism we
develop is applicable to anisotropic filtering of arbitrary tensor fields on
the sphere.Comment: 8 pages, 1 figure; Minor changes to match version accepted by Phys.
Rev.
The QUIJOTE experiment: project overview and first results
QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the
polarization of the Cosmic Microwave Background and other Galactic and
extragalactic signals at medium and large angular scales in the frequency range
10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first
QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory
(2400~m a.s.l). During 2014 the second telescope has been installed at this
observatory. A second instrument at 30~GHz will be ready for commissioning at
this telescope during summer 2015, and a third additional instrument at 40~GHz
is now being developed. These instruments will have nominal sensitivities to
detect the B-mode polarization due to the primordial gravitational-wave
component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings
of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel,
Spain (2014
Political Leadership as Statecraft? Aligning Theory with Praxis in Conversation with British Party Leaders
How should prime ministerial and party leadership be understood and assessed? One leading approach posits that we should assess them in terms of whether they achieve statecraft, that is, winning and maintain office in government. This article supplements and then assesses that theory by drawing from Pawson and Tilley’s (1997) concept of the realistic interview, in which practitioners are deployed as co-researchers to assess and revise theory. Unprecedented interviews with British party leaders were therefore undertaken. The article provides new empirical support for the framework because many of the key generative mechanisms identified within the neo-statecraft model were present in an analysis of the interviews. The interviews also allowed the limitations of the model to be demarcated. Statecraft focusses purely on cunning leadership where the aim is to maximise power and influence. This differs from leadership by conscious where the aim is to achieve normative goals
- …
