4,177 research outputs found
The Origin of Galactic Cosmic Rays
Motivated by recent measurements of the major components of the cosmic
radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a
model in which there are two distinct kinds of cosmic ray accelerators in the
galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per
nucleon suggests that these two elements do not have the same spectrum of
magnetic rigidity over this entire region and that these two dominant elements
therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures,
uuencode
Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter
In recent years, a number of experiments have been conducted with the goal of
studying cosmic rays at GeV to TeV energies. This is a particularly interesting
regime from the perspective of indirect dark matter detection. To draw reliable
conclusions regarding dark matter from cosmic ray measurements, however, it is
important to first understand the propagation of cosmic rays through the
magnetic and radiation fields of the Milky Way. In this paper, we constrain the
characteristics of the cosmic ray propagation model through comparison with
observational inputs, including recent data from the CREAM experiment, and use
these constraints to estimate the corresponding uncertainties in the spectrum
of cosmic ray electrons and positrons from dark matter particles annihilating
in the halo of the Milky Way.Comment: 21 pages, 9 figure
How Many Topics? Stability Analysis for Topic Models
Topic modeling refers to the task of discovering the underlying thematic
structure in a text corpus, where the output is commonly presented as a report
of the top terms appearing in each topic. Despite the diversity of topic
modeling algorithms that have been proposed, a common challenge in successfully
applying these techniques is the selection of an appropriate number of topics
for a given corpus. Choosing too few topics will produce results that are
overly broad, while choosing too many will result in the "over-clustering" of a
corpus into many small, highly-similar topics. In this paper, we propose a
term-centric stability analysis strategy to address this issue, the idea being
that a model with an appropriate number of topics will be more robust to
perturbations in the data. Using a topic modeling approach based on matrix
factorization, evaluations performed on a range of corpora show that this
strategy can successfully guide the model selection process.Comment: Improve readability of plots. Add minor clarification
Space, Time and Color in Hadron Production Via e+e- -> Z0 and e+e- -> W+W-
The time-evolution of jets in hadronic e+e- events at LEP is investigated in
both position- and momentum-space, with emphasis on effects due to color flow
and particle correlations. We address dynamical aspects of the four
simultanously-evolving, cross-talking parton cascades that appear in the
reaction e+e- -> gamma/Z0 -> W+W- -> q1 q~2 q3 q~4, and compare with the
familiar two-parton cascades in e+e- -> Z0 -> q1 q~2. We use a QCD statistical
transport approach, in which the multiparticle final state is treated as an
evolving mixture of partons and hadrons, whose proportions are controlled by
their local space-time geography via standard perturbative QCD parton shower
evolution and a phenomenological model for non-perturbative parton-cluster
formation followed by cluster decays into hadrons. Our numerical simulations
exhibit a characteristic `inside-outside' evolution simultanously in position
and momentum space. We compare three different model treatments of color flow,
and find large effects due to cluster formation by the combination of partons
from different W parents. In particular, we find in our preferred model a shift
of several hundred MeV in the apparent mass of the W, which is considerably
larger than in previous model calculations. This suggests that the
determination of the W mass at LEP2 may turn out to be a sensitive probe of
spatial correlations and hadronization dynamics.Comment: 52 pages, latex, 18 figures as uu-encoded postscript fil
Colour reconnections in Herwig++
We describe the implementation details of the colour reconnection model in
the event generator Herwig++. We study the impact on final-state observables in
detail and confirm the model idea from colour preconfinement on the basis of
studies within the cluster hadronization model. Moreover, we show that the
description of minimum bias and underlying event data at the LHC is improved
with this model and present results of a tune to available data.Comment: 19 pages, 21 figures, 2 tables. Matches with published versio
- …
