1,981 research outputs found
The design and fabrication of microstrip omnidirectional array antennas for aerospace applications
A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications
Why is timing of bird migration advancing when individuals are not?
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants
IRAC Observations of M81
IRAC images of M81 show three distinct morphological constituents: a smooth
distribution of evolved stars with bulge, disk, and spiral arm components; a
clumpy distribution of dust emission tracing the spiral arms; and a pointlike
nuclear source. The bulge stellar colors are consistent with M-type giants, and
the disk colors are consistent with a slightly younger population. The dust
emission generally follows the blue and ultraviolet emission, but there are
large areas that have dust emission without ultraviolet and smaller areas with
ultraviolet but little dust emission. The former are presumably caused by
extinction, and the latter may be due to cavities in the gas and dust created
by supernova explosions. The nucleus appears fainter at 8 um than expected from
ground-based 10 um observations made four years ago.Comment: ApJS in press (Spitzer special issue); 15 pages, 3 figures. Changes:
unused references removed, numbers and labels in Table 1 change
A Spitzer Unbiased Ultradeep Spectroscopic Survey
We carried out an unbiased, spectroscopic survey using the low-resolution
module of the infrared spectrograph (IRS) on board Spitzer targeting two 2.6
square arcminute regions in the GOODS-North field. IRS was used in spectral
mapping mode with 5 hours of effective integration time per pixel. One region
was covered between 14 and 21 microns and the other between 20 and 35 microns.
We extracted spectra for 45 sources. About 84% of the sources have reported
detections by GOODS at 24 microns, with a median F_nu(24um) ~ 100 uJy. All but
one source are detected in all four IRAC bands, 3.6 to 8 microns. We use a new
cross-correlation technique to measure redshifts and estimate IRS spectral
types; this was successful for ~60% of the spectra. Fourteen sources show
significant PAH emission, four mostly SiO absorption, eight present mixed
spectral signatures (low PAH and/or SiO) and two show a single line in
emission. For the remaining 17, no spectral features were detected. Redshifts
range from z ~ 0.2 to z ~ 2.2, with a median of 1. IR Luminosities are roughly
estimated from 24 microns flux densities, and have median values of 2.2 x
10^{11} L_{\odot} and 7.5 x 10^{11} L_{\odot} at z ~ 1 and z ~ 2 respectively.
This sample has fewer AGN than previous faint samples observed with IRS, which
we attribute to the fainter luminosities reached here.Comment: Published in Ap
Mid-J CO Emission From NGC 891: Microturbulent Molecular Shocks in Normal Star Forming Galaxies
We have detected the CO(6-5), CO(7-6), and [CI] 370 micron lines from the
nuclear region of NGC 891 with our submillimeter grating spectrometer ZEUS on
the CSO. These lines provide constraints on photodissociation region (PDR) and
shock models that have been invoked to explain the H_2 S(0), S(1), and S(2)
lines observed with Spitzer. We analyze our data together with the H_2 lines,
CO(3-2), and IR continuum from the literature using a combined PDR/shock model.
We find that the mid-J CO originates almost entirely from shock-excited warm
molecular gas; contributions from PDRs are negligible. Also, almost all the H_2
S(2) and half of the S(1) line is predicted to emerge from shocks. Shocks with
a pre-shock density of 2x10^4 cm^-3 and velocities of 10 km/s and 20 km/s for
C-shocks and J-shocks, respectively, provide the best fit. In contrast, the
[CI] line emission arises exclusively from the PDR component, which is best
parameterized by a density of 3.2x10^3 cm^-3 and a FUV field of G_o = 100 for
both PDR/shock-type combinations. Our mid-J CO observations show that
turbulence is a very important heating source in molecular clouds, even in
normal quiescent galaxies. The most likely energy sources for the shocks are
supernovae or outflows from YSOs. The energetics of these shock sources favor
C-shock excitation of the lines.Comment: 18 pages, 2 figures, 6 tables, accepted by Ap
Detection of Powerful Mid-IR H_2 Emission in the Bridge between the Taffy Galaxies
We report the detection of strong, resolved emission from warm H_2 in the Taffy galaxies and bridge. Relative to the continuum and faint polyclic aromatic hydrocarbon (PAH) emission, the H_2 emission is the strongest in the connecting bridge, approaching L(H_2)/L(PAH 8 μm) = 0.1 between the two galaxies, where the purely rotational lines of H_2 dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephan's Quintet (SQ). The surface brightness in the 0-0 S(0) and S(1) H_2 lines in the bridge is more than twice that observed at the center of the SQ shock. We observe a warm H2 mass of 4.2 × 10^8 M_☉ in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of ~5 × 10^6 M_☉ kpc^(–2) and typical excitation temperatures of 150-175 K. H_2 emission is also seen in the galaxy disks, although there the emission is more consistent with normal star-forming galaxies. We investigate several possible heating mechanisms for the bridge gas but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H_2 is short (~5000 yr), shocks must be permeating the molecular gas in the bridge region in order to continue heating the H_2
The Cool ISM in S0 Galaxies. I. A Survey of Molecular Gas
Lenticular galaxies remain remarkably mysterious as a class. Observations to
date have not led to any broad consensus about their origins, properties and
evolution, though they are often thought to have formed in one big burst of
star formation early in the history of the Universe, and to have evolved
relatively passively since then. In that picture, current theory predicts that
stellar evolution returns substantial quantities of gas to the interstellar
medium; most is ejected from the galaxy, but significant amounts of cool gas
might be retained. Past searches for that material, though, have provided
unclear results. We present results from a survey of molecular gas in a
volume-limited sample of field S0 galaxies, selected from the Nearby Galaxies
Catalog. CO emission is detected from 78 percent of the sample galaxies. We
find that the molecular gas is almost always located inside the central few
kiloparses of a lenticular galaxy, meaning that in general it is more centrally
concentrated than in spirals. We combine our data with HI observations from the
literature to determine the total masses of cool and cold gas. Curiously, we
find that, across a wide range of luminosity, the most gas rich galaxies have
about 10 percent of the total amount of gas ever returned by their stars. That
result is difficult to understand within the context of either monolithic or
hierarchical models of evolution of the interstellar medium.Comment: 26 pages of text, 15 pages of tables, 10 figures. Accepted for
publication in the Astrophysical Journa
Characterization of Extragalactic 24micron Sources in the Spitzer First Look Survey
In this Letter, we present the initial characterization of extragalactic 24um
sources in the Spitzer First Look Survey (FLS) by examining their counterparts
at 8um and R-band. The color-color diagram of 24-to-8 vs. 24-to-0.7um is
populated with 18,734 sources brighter than the 3sigma flux limit of 110uJy,
over an area of 3.7sq.degrees. The 24-to-0.7um colors of these sources span
almost 4 orders of magnitudes, while the 24-to-8um colors distribute at least
over 2 orders of magnitudes. In addition to identifying ~30% of the total
sample with infrared quiescent, mostly low redshift galaxies, we also found
that: (1) 23% of the 24um sources (~1200/sq.degrees) have very red 24-to-8 and
24-to-0.7 colors and are probably infrared luminous starbursts with
L(IR)>3x10^(11)Lsun at z>1. In particular, 13% of the sample (660/sq.degrees)
are 24um detected only, with no detectable emission in either 8um or R-band.
These sources are the candidates for being ULIRGs at z>2. (2) 2% of the sample
(85/sq.degrees) have colors similar to dust reddened AGNs, like Mrk231 at
z~0.6-3. (3) We anticipate that some of these sources with extremely red colors
may be new types of sources, since they can not be modelled with any familiar
type of spectral energy distribution. We find that 17% of the 24um sources have
no detectable optical counterparts brighter than R limit of 25.5mag. Optical
spectroscopy of these optical extremely faint 24um sources would be very
difficult, and mid-infrared spectroscopy from the Spitzer would be critical for
understanding their physical nature (Abridged).Comment: Accepted for publication in ApJ (Spitzer Special Issue
Obscured and unobscured active galactic nuclei in the Spitzer Space Telescope First Look Survey
Selection of active galactic nuclei (AGN) in the infrared allows the
discovery of AGN whose optical emission is extinguished by dust. In this paper,
we use the Spitzer Space Telescope First Look Survey (FLS) to assess what
fraction of AGN with mid-infrared luminosities comparable to quasars are missed
in optical quasar surveys due to dust obscuration. We begin by using the Sloan
Digital Sky Survey (SDSS) database to identify 54 quasars within the 4 deg^2
extragalactic FLS. These quasars occupy a distinct region in mid-infrared color
space by virtue of their strong, red, continua. This has allowed us to define a
mid-infrared color criterion for selecting AGN candidates. About 2000 FLS
objects have colors consistent with them being AGN, but most are much fainter
in the mid-infrared than the SDSS quasars, which typically have 8 micron flux
densities, S(8.0), ~1 mJy. We have investigated the properties of the 43
objects with S(8.0) >= 1 mJy satisfying our AGN color selection. This sample
should contain both unobscured quasars, and AGN which are absent from the SDSS
survey due to extinction in the optical. After removing 16 known quasars, three
probable normal quasars, and eight spurious or confused objects from the
initial sample of 43, we are left with 16 objects which are likely to be
obscured quasars or luminous Seyfert-2 galaxies. This suggests the numbers of
obscured and unobscured AGN are similar in samples selected in the mid-infrared
at S(8.0)~1 mJy.Comment: To appear in the ApJS Spitzer Special Issu
The Energetics of Molecular Gas in NGC 891 from H2 and FIR Spectroscopy
We have studied the molecular hydrogen energetics of the edge-on spiral
galaxy NGC\,891, using a 34-position map in the lowest three pure rotational
H lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1),
and S(2) lines are bright with an extinction corrected total luminosity of
L, or 0.09\% of the total-infrared luminosity
of NGC\,891. The H line ratios are nearly constant along the plane of the
galaxy -- we do not observe the previously reported strong drop-off in the
S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find
no evidence for the very massive cold CO-free molecular clouds invoked to
explain the past observations. The H level excitation temperatures increase
monotonically indicating more than one component to the emitting gas. More than
99\% of the mass is in the lowest excitation (T 125 K) ``warm''
component. In the inner galaxy, the warm H emitting gas is 15\% of
the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction
is twice as high. This large mass of warm gas is heated by a combination of the
far-UV photons from stars in photo-dissociation regions (PDRs) and the
dissipation of turbulent kinetic energy. Including the observed far-infrared
[OI] and [CII] fine-structure line emission and far-infrared continuum emission
in a self-consistent manner to constrain the PDR models, we find essentially
all of the S(0) and most (70\%) of the S(1) line arises from low excitation
PDRs, while most (80\%) of the S(2) and the remainder of the S(1) line emission
arises from low velocity microturbulent dissipation.Comment: Accepted for publication in The Astrophysical Journal. Figure 10
available at http://www.physics.uoc.gr/~vassilis/papers/ngc891.pd
- …
