69 research outputs found

    Changes in insulin like growth factors, myostatin and vascular endothelial growth factor in rat musculus latissimus dorsi by poly 3-hydroxybutyrate implants

    Get PDF
    The present study aimed at researching the synergistic effect between an ectopic bone substitute and surrounding muscle tissue. To describe this effect, changes of insulin like growth factors (IGF1, IGF2), myostatin (GDF8) and vascular endothelial growth factor (VEGF) mRNA content of 12 Wistar-King rats musculus latissimus dorsi with implanted poly-3-hydroxybutyrate (PHB) scaffold were examined after 6 and 12 weeks. At each time interval six rats were killed and implants and surrounding tissues prepared for genetic evaluation. Eight rats without any implants served as controls. RNAwas extracted from homogenized muscle tissue and reverse transcribed. Changes in mRNA content were measured by Real-Time PCR using specific primers for IGF1, IGF2, GDF8 and VEGF. Comparing the level of VEGF mRNA in muscle after 6 and 12 weeks to the controls, we could assess a significant increase of VEGF gene expression (

    EXTRACTION OF RAILROAD OBJECTS FROM VERY HIGH RESOLUTION HELICOPTER-BORNE LIDAR AND ORTHO-IMAGE DATA

    Get PDF
    LiDAR (Light Detection and Ranging) sensors and digital aerial camera systems using a slow and low flying aircraft provide a new quality of data for a variety of promising large-scale applications. The main of this study objective is the development of methods for the automated object extraction of railway infrastructure from combined helicopter-based extremely dense laser scanner measurement points and very high resolution digital ortho-imagery. Thus, different existing methods from digital image processing, image segmentation and object recognition have been compared regarding their performance, output quality and level of automation. It turned out that all existing methods are not suitable to meet the requirements (geometrical accuracy of the result, amount of data to be processed etc.). Since original LiDAR point data provides a higher accuracy than derived DTM raster data or ortho-imagery new suited methods for the object extraction from point clouds have been developed. For the extraction of linear features, such as rails and catenaries, two new methods were implemented. The first method sets up on pre-classified laser points as input data. Therefore the RANSAC algorithm was implemented successfully to extract linear objects within the environment of MATLAB and ArcGIS. Second, a knowledge-based classification method was designed to compare a reference profile with the situation along the track using IDL. The results show new prospects to automatically extract railroad objects with a high geometrical accuracy from extremely dense LiDAR data without using aerial imagery. The decision not to use image data was especially caused by the enormous data amount t

    Bone graft substitutes in periodontal and peri-implant bone regeneration

    Get PDF
    Regenerative medicine provides different therapy alternatives alongside gold standard autogenous grafts for the treatment of periodontal or peri-implant osseous defects. Continuing progress in the field of alloplastic bone substitutes has yielded promising solutions to the appropriate indications with the membrane technique either alone or in combination with enamel matrix derivatives. Their clinical outcomes, however, still require critical discussion

    The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone® and Straumann Bone Ceramic®)

    Get PDF
    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone® and Straumann Bone Ceramic®, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions

    Histological and fluorescence microscopic examination of the bone/implant interface in orthodontic miniscrews (Mondeal®)

    Get PDF
    The temporary nature of orthodontic implants demands optimisation of size and design in order to minimise damage and risk to the patient. Slender and shorter miniscrews offer the advantage over conventional implants of easier and more ubiquitous positioning with minimised risk of injury to neighbouring anatomical structures such as tooth roots, nerves or vessels. The question is raised, however, as to what extent these advantages are gained at the price of diminished stability or a more unfavourable bone interface. In order to evaluate the screw/bone interface, 14 orthodontic miniscrews (Mondeal Medical Systems, diameter: 1.5 mm, length: 9 mm) were inserted into the right and left mandibles of 7 pigs (Sus scrofa domestica). Bone fluorochromes were administered in a defined order for polychrome sequencing. The samples gathered after 70 days were analysed using histological techniques and fluorescence microscopy. The lower part of the self-tapping thread displayed undisturbed bone apposition. Fluorescence microscopy revealed remodelling and bone apposition within the thread grooves

    Bacterial colonisation of interior implant threads with and without sealing

    Get PDF
    Premature loss of dental implants is due, apart from mechanical factors, to germrelated inflammation. Gaps and hollow spaces within the implant system, for example the gap between implant and abutment in the two-part implant system, may provide a bacterial reservoir causing or maintaining inflammation. The bacterial spectrum involved is similar to that found in periodontitis. This in vitro study aimed to scrutinise the capability of Porphyromonas gingivalis (DSM 20709), the bacterium blamed for inducing peri-implantitis, to pass the implant/abutment gap in titanium implant systems used for orthodontic anchorage and to remain vital in the interior. Additionally, the in vitro effectiveness of gutta percha for gap sealing was examined. Twelve titanium implants (Straumann ®, diameter: 3.3 mm, length 5.5 mm) were provided with abutments at a defined torque (20 Ncm), six of which were sealed with gutta percha before screwing in the abutment. Subsequently the implants were placed in a nutrient solution (thioglycolate boullion with haemin-menadione solution) that contained Porphyromonas gingivalis. Microbiological specimens were sampled from the implant interiors after 24 and 72 hours and analysed using culture methods. There was evidence that penetration of the periodontal pathogen Porphyromonas gingivalis to the implant interior may occur as early as after 24 hours. Microbes were also detected in the interior of implants sealed with gutta percha. The abutment/implant interface in vitro provides a microbiological leakage for the prospective peri-implantitis-inducing bacterium Porphyromonas gingivalis. Survival of the bacterium is possible in the interior, so that development of a bacterial reservoir is assumed. This in vitro trial produced no evidence that sealing with gutta percha is an effective means to prevent secondary bacterial colonisation in the implant interior

    The survival and proliferation of fibroblasts on orthodontic miniscrews with different surface treatment: an in vitro study

    Get PDF
    It is of fundamental importance for prosthodontic and orthodontic applications that there is a short osseointegration time of dental implants without inflammation of the surrounding tissue. In addition to the chemical properties of the implant material, the surface morphology is an equally critical parameter. The objective of this work was to study the effect of two simple surface treatments on the survival and proliferation of fibroblasts. Three groups of orthodontic miniscrews (Mondeal®) were used. One group was given an airflow (EMS, Schweiz) treatment, the second was sand-blasted in the area of the threading and a third group served as a control. After preparation sterilised screws were cultured in vitro with fibroblasts (L-929). The metabolic cell activity on the implant surface was determined after 24, 48 and 120 hours using the alamarBlue assay and a count of DAPI labelled fibroblasts was performed with a fluorescence microscope. After 24 hours, but not at 48 hours and 120 hours, the metabolic activity of the fibroblasts was slightly decreased for the airflow screw group. Generally, no significant difference was found regarding metabolic activity and proliferation of fibroblasts within the different groups

    The morphological and clinical relevance of mandibular and maxillary bone structures for implantation

    Get PDF
    Tooth loss, which interrupts the biocybernetic feedback circuit of the masticatory system, changes the structures of the jaw bone: such changes are termed "inactivity atrophy". The mandible is subject to vertical atrophy and the maxilla is primarily subject to horizontal atrophy. The mandible possesses more compact bone, the maxilla more spongy; the resorption directions also differ (mandible: towards the oral aspect; maxilla: towards the vestibular). An implant helps to restore the biocybernetic feedback system. The amount of available bone, bone structure, and topographic conditions are crucial factors influencing implant success. Osseointegration is performed at an early stage (which includes bleeding, granulation tissue, foreign-body recognition, interactions) and at a late stage (so-called osseous bridging, development of fibrous and lamellar bone)

    The use of ceramic drills on a zirconium oxide basis in bone preparation

    Get PDF
    The favourable mechanical properties and high biocompatibility of the newly developed mixed ceramics composed of zirconium oxide and aluminium oxide have continuously extended the scope of their application. Rotating instruments on a zirconium oxide basis are regarded as superior to metal burs in dentoalveolar surgery in terms of favourable temperature effects on the surrounding bone tissue and the economic advantage that they wear slowly, enabling them to be used repeatedly. In this study ten round burs made of zirconium oxide and aluminium oxide mixed ceramics were used for typical dental-alveolar preparation types on an explanted pig jaw. Prior to the first and following the tenth application a scanning electron microscopic (SEM) analysis of possible wear signs was conducted. However, this revealed no evidence of wear or resulting loss of sharpness

    The clinical application of a new synthetic bone grafting material in oral and maxillofacial surgery

    Get PDF
    A novel bone formation material based on hydroxyapatite-xerogel is presented. With the use of the innovative sol-gel technology this material is produced in the low-temperature range by the addition of silicon dioxide; in its structure it mimics to a great extent the natural bone matrix. This results in high osteoconductivity and an osteoprotective effect as well as in complete biodegradation corresponding to bone formation in the course of natural bone remodelling. Two case reports are presented
    corecore