93 research outputs found
Comment on superluminality in general relativity
General relativity provides an appropriate framework for addressing the issue
of sub- or superluminality as an apparent effect. Even though a massless
particle travels on the light cone, its average velocity over a finite path
measured by different observers is not necessarily equal to the velocity of
light, as a consequence of the time dilation or contraction in gravitational
fields. This phenomenon occurs in either direction (increase or depletion)
irrespectively of the details and strength of the gravitational interaction.
Hence, it does not intrinsically guarantee superluminality, even when the
gravitational field is reinforced.Comment: 6 page
Exact and Approximate Formulas for Neutrino Mixing and Oscillations with Non-Standard Interactions
We present, both exactly and approximately, a complete set of mappings
between the vacuum (or fundamental) leptonic mixing parameters and the
effective ones in matter with non-standard neutrino interaction (NSI) effects
included. Within the three-flavor neutrino framework and a constant matter
density profile, a full set of sum rules is established, which enables us to
reconstruct the moduli of the effective leptonic mixing matrix elements, in
terms of the vacuum mixing parameters in order to reproduce the neutrino
oscillation probabilities for future long-baseline experiments. Very compact,
but quite accurate, approximate mappings are obtained based on series
expansions in the neutrino mass hierarchy parameter \eta \equiv \Delta
m^2_{21}/\Delta m^2_{31}, the vacuum leptonic mixing parameter s_{13} \equiv
\sin\theta_{13}, and the NSI parameters \epsilon_{\alpha\beta}. A detailed
numerical analysis about how the NSIs affect the smallest leptonic mixing angle
\theta_{13}, the deviation of the leptonic mixing angle \theta_{23} from its
maximal mixing value, and the transition probabilities useful for future
experiments are performed using our analytical results.Comment: 29 pages, 8 figures, final version published in J. High Energy Phy
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
Reconstructing the two right-handed neutrino model
In this paper we propose a low-energy parametrization of the two right-handed
neutrino model, and discuss the prospects to determine experimentally these
parameters in supersymmetric scenarios. In addition, we present exact formulas
to reconstruct the high-energy leptonic superpotential in terms of the
low-energy observables. We also discuss limits of the three right-handed
neutrino model where this procedure applies.Comment: 28 pages, 4 figures. Typos corrected, references adde
Future Precision Neutrino Oscillation Experiments and Theoretical Implications
Future neutrino oscillation experiments will lead to precision measurements
of neutrino mass splittings and mixings. The flavour structure of the lepton
sector will therefore at some point become better known than that of the quark
sector. This article discusses the potential of future oscillation experiments
on the basis of detailed simulations with an emphasis on experiments which can
be done in about ten years. In addition, some theoretical implications for
neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott,
Enkoping, Sweden, 19-24 Aug 200
First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments
We compare the physics potential of the upcoming neutrino oscillation
experiments Daya Bay, Double Chooz, NOvA, RENO, and T2K based on their
anticipated nominal luminosities and schedules. After discussing the
sensitivity to theta_{13} and the leading atmospheric parameters, we
demonstrate that leptonic CP violation will hardly be measurable without
upgrades of the T2K and NOvA proton drivers, even if theta_{13} is large. In
the presence of the proton drivers, the fast track to hints for CP violation
requires communication between the T2K and NOvA collaborations in terms of a
mutual synchronization of their neutrino-antineutrino run plans. Even in that
case, upgrades will only discover CP violation in a relatively small part of
the parameter space at the 3 sigma confidence level, while 90% confidence level
hints will most likely be obtained. Therefore, we conclude that a new facility
will be required if the goal is to obtain a significant result with high
probability.Comment: 27 pages, 12 figure
Neutrino oscillation physics at an upgraded CNGS with large next generation liquid Argon TPC detectors
The determination of the missing element (magnitude and phase) of
the PMNS neutrino mixing matrix is possible via the detection of \numu\to\nue
oscillations at a baseline and energy given by the atmospheric
observations, corresponding to a mass squared difference . While the current optimization of the CNGS
beam provides limited sensitivity to this reaction, we discuss in this document
the physics potential of an intensity upgraded and energy re-optimized CNGS
neutrino beam coupled to an off-axis detector. We show that improvements in
sensitivity to compared to that of T2K and NoVA are possible with
a next generation large liquid Argon TPC detector located at an off-axis
position (position rather distant from LNGS, possibly at shallow depth). We
also address the possibility to discover CP-violation and disentangle the mass
hierarchy via matter effects. The considered intensity enhancement of the CERN
SPS has strong synergies with the upgrade/replacement of the elements of its
injector chain (Linac, PSB, PS) and the refurbishing of its own elements,
envisioned for an optimal and/or upgraded LHC luminosity programme.Comment: 37 pages, 20 figure
Observation of nu_tau appearance in the CNGS beam with the OPERA experiment
The OPERA experiment is searching for nu_mu -> nu_tau oscillations in
appearance mode i.e. via the direct detection of tau leptons in nu_tau charged
current interactions. The evidence of nu_mu -> nu_tau appearance has been
previously reported with three nu_tau candidate events using a sub-sample of
data from the 2008-2012 runs. We report here a fourth nu_tau candidate event,
with the tau decaying into a hadron, found after adding the 2012 run events
without any muon in the final state to the data sample. Given the number of
analysed events and the low background, nu_mu -> nu_tau oscillations are
established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP
Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment
The OPERA long-baseline neutrino-oscillation experiment has observed the
direct appearance of in the CNGS beam. Two large muon
magnetic spectrometers are used to identify muons produced in the
leptonic decay and in interactions by measuring their charge and
momentum. Besides the kinematic analysis of the decays, background
resulting from the decay of charmed particles produced in
interactions is reduced by efficiently identifying the muon track. A new method
for the charge sign determination has been applied, via a weighted angular
matching of the straight track-segments reconstructed in the different parts of
the dipole magnets. Results obtained for Monte Carlo and real data are
presented. Comparison with a method where no matching is used shows a
significant reduction of up to 40\% of the fraction of wrongly determined
charges.Comment: 10 pages. Improvements in the tex
Renormalization Group Evolution of Dirac Neutrino Masses
There are good reasons why neutrinos could be Majorana particles, but there
exist also a number of very good reasons why neutrinos could have Dirac masses.
The latter option deserves more attention and we derive therefore analytic
expressions describing the renormalization group evolution of mixing angles and
of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings
are in this case enhanced compared to the quark mixings because the hierarchy
of neutrino masses is milder and because the mixing angles are larger. The
renormalization group effects are compared to the precision of current and
future neutrino experiments. We find that, in the MSSM framework, radiative
corrections of the mixing angles are for large \tan\beta comparable to the
precision of future experiments.Comment: 19 pages, 5 figures; error in eq. 8 corrected, references adde
- …
