10,503 research outputs found
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
Pfaffian-like ground state for 3-body-hard-core bosons in 1D lattices
We propose a Pfaffian-like Ansatz for the ground state of bosons subject to
3-body infinite repulsive interactions in a 1D lattice. Our Ansatz consists of
the symmetrization over all possible ways of distributing the particles in two
identical Tonks-Girardeau gases. We support the quality of our Ansatz with
numerical calculations and propose an experimental scheme based on mixtures of
bosonic atoms and molecules in 1D optical lattices in which this Pfaffian-like
state could be realized. Our findings may open the way for the creation of
non-abelian anyons in 1D systems
The gamma-ray emitting microquasar LSI+61303
LS I +61 303 is one of the most studied X-ray binary systems because of its
two peculiarities: On the one hand being the probable counterpart of the
variable gamma ray source 2CG 135+01 (Gregory and Taylor 1978; Tavani et al.
1998) and on the other hand being a periodic radio source (Taylor and Gregory
1982). The recent discovery of a radio emitting jet extending ca. 200 AU at
both sides of a central core (Massi et al. 2004) in all evidence has shown the
occurrence of accretion/ejection processes in this system. However, the radio
outbursts do not occur at periastron passage, where the accretion is at its
maximum, but several days later. In addition, when the gamma-ray emission of
2CG 135+01 is examined along the orbital phase of LS I +61 303 one sees that
this emission seems to peak at periastron passage (Massi 2004). Here in detail
we analyse the trend of the gamma-ray data versus orbital phase and discuss the
delay between peaks at gamma-rays and in the radio band within the framework of
a two-peak accretion/ejection model proposed by Taylor et al. (1992) and
further developed by Marti' and Paredes (1995).Comment: To be published in the proceedings of the Symposium on High-Energy
Gamma-Ray Astronomy, Heidelberg, July 26-30, 2004 (AIP Proceedings Series
Decoupled and unidirectional asymptotic models for the propagation of internal waves
We study the relevance of various scalar equations, such as inviscid
Burgers', Korteweg-de Vries (KdV), extended KdV, and higher order equations (of
Camassa-Holm type), as asymptotic models for the propagation of internal waves
in a two-fluid system. These scalar evolution equations may be justified with
two approaches. The first method consists in approximating the flow with two
decoupled, counterpropagating waves, each one satisfying such an equation. One
also recovers homologous equations when focusing on a given direction of
propagation, and seeking unidirectional approximate solutions. This second
justification is more restrictive as for the admissible initial data, but
yields greater accuracy. Additionally, we present several new coupled
asymptotic models: a Green-Naghdi type model, its simplified version in the
so-called Camassa-Holm regime, and a weakly decoupled model. All of the models
are rigorously justified in the sense of consistency
Observation of the Meissner effect with ultracold atoms in bosonic ladders
We report on the observation of the Meissner effect in bosonic flux ladders
of ultracold atoms. Using artificial gauge fields induced by laser-assisted
tunneling, we realize arrays of decoupled ladder systems that are exposed to a
uniform magnetic field. By suddenly decoupling the ladders and projecting into
isolated double wells, we are able to measure the currents on each side of the
ladder. For large coupling strengths along the rungs of the ladder, we find a
saturated maximum chiral current corresponding to a full screening of the
artificial magnetic field. For lower coupling strengths, the chiral current
decreases in good agreement with expectations of a vortex lattice phase. Our
work marks the first realization of a low-dimensional Meissner effect and,
furthermore, it opens the path to exploring interacting particles in low
dimensions exposed to a uniform magnetic field
Formation and Collapse of Quiescent Cloud Cores Induced by Dynamic Compressions
(Abridged) We present numerical hydrodynamical simulations of the formation,
evolution and gravitational collapse of isothermal molecular cloud cores. A
compressive wave is set up in a constant sub-Jeans density distribution of
radius r = 1 pc. As the wave travels through the simulation grid, a
shock-bounded spherical shell is formed. The inner shock of this shell reaches
and bounces off the center, leaving behind a central core with an initially
almost uniform density distribution, surrounded by an envelope consisting of
the material in the shock-bounded shell, with a power-law density profile that
at late times approaches a logarithmic slope of -2 even in non-collapsing
cases. The resulting density structure resembles a quiescent core of radius <
0.1 pc, with a Bonnor-Ebert-like (BE-like) profile, although it has significant
dynamical differences: it is initially non-self-gravitating and confined by the
ram pressure of the infalling material, and consequently, growing continuously
in mass and size. With the appropriate parameters, the core mass eventually
reaches an effective Jeans mass, at which time the core begins to collapse.
Thus, there is necessarily a time delay between the appearance of the core and
the onset of its collapse, but this is not due to the dissipation of its
internal turbulence as it is often believed. These results suggest that
pre-stellar cores may approximate Bonnor-Ebert structures which are however of
variable mass and may or may not experience gravitational collapse, in
qualitative agreement with the large observed frequency of cores with BE-like
profiles.Comment: Accepted for publication in ApJ. Associated mpeg files can be found
in http://www.astrosmo.unam.mx/~g.gomez/publica.htm
Peripheral and central mechanisms involved in hormonal control of male and female reproduction
Reproduction involves the integration of hormonal signals acting across multiple systems togenerate a synchronized physiological output. A critical component of reproduction is the luteinizinghormone (LH) surge, which is mediated by estradiol (E2) and neuroprogesterone interacting tostimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recentevidence has shown that both classical and membrane E2 and progesterone signaling is involved inthis pathway. A metabolite of gonadotropin-releasing hormone (GnRH), GnRH-(1-5), has been shownto stimulate GnRH expression, secretion, and has a role in the regulation of lordosis. Additionally,gonadotropin-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurons inbirds. Stress-induced changes in GnIH have been shown to alter breeding behaviors in birds,demonstrating another molecular control of reproduction. Peripherally, paracrine and autocrineactions within the gonad have been suggested as therapeutic targets for infertility in both males andfemales. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic maleinfertility. Indeed, local production of melatonin and corticotropin-releasing hormone (CRH) couldinfluence spermatogenesis via immune pathways in the gonad. In females, vascular endothelialgrowth factor A (VEGF-A) has been implicated in an angiogenic process that mediates developmentof the corpus luteum and thus fertility via the Notch signaling pathway. Age-induced decreases infertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally,morphological changes in the arcuate nucleus of the hypothalamus influence female sexualreceptivity in rats. The processes mediating these morphological changes have been shown toinvolve rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. Together, thisreview highlights new research in these areas, focusing on recent findings in the molecularmechanisms of central and peripheral hormonal control of reproduction.Fil: Rudolph, L. M.. University of California at Los Angeles; Estados UnidosFil: Bentley, G. E.. University of California Berkeley; Estados UnidosFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Paredes, A. H.. Universidad de Chile; ChileFil: Tesone, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Wu, T. J.. Uniformed Services University; Estados UnidosFil: Micevych, P. E.. University of California at Los Angeles; Estados Unido
Efficient and robust initialization of a qubit register with fermionic atoms
We show that fermionic atoms have crucial advantages over bosonic atoms in
terms of loading in optical lattices for use as a possible quantum computation
device. After analyzing the change in the level structure of a non-uniform
confining potential as a periodic potential is superimposed to it, we show how
this structure combined with the Pauli principle and fermion degeneracy can be
exploited to create unit occupancy of the lattice sites with very high
efficiency.Comment: 4 pages, 3 figure
- …
