1,185 research outputs found
From solar-like to anti-solar differential rotation in cool stars
Stellar differential rotation can be separated into two main regimes:
solar-like when the equator rotates faster than the poles and anti-solar when
the polar regions rotate faster than the equator. We investigate the transition
between these two regimes with 3-D numerical simulations of rotating spherical
shells. We conduct a systematic parameter study which also includes models from
different research groups. We find that the direction of the differential
rotation is governed by the contribution of the Coriolis force in the force
balance, independently of the model setup (presence of a magnetic field,
thickness of the convective layer, density stratification). Rapidly-rotating
cases with a small Rossby number yield solar-like differential rotation, while
weakly-rotating models sustain anti-solar differential rotation. Close to the
transition, the two kinds of differential rotation are two possible bistable
states. This study provides theoretical support for the existence of anti-solar
differential rotation in cool stars with large Rossby numbers.Comment: 5 pages, 6 figures, accepted for publication in MNRA
Improved orbital solution and masses for the very low-mass multiple system LHS 1070
We present a refined orbital solution for the components A, B, and C of the
nearby late-M type multiple system LHS 1070. By combining astrometric
datapoints from NACO/VLT, CIAO/SUBARU, and PUEO/CFHT, as well as a radial
velocity measurement from the newly commissioned near infrared high-resolution
spectrograph CRIRES/VLT, we achieve a very precise orbital solution for the B
and C components and a first realistic constraint on the much longer orbit of
the A-BC system. Both orbits appear to be co-planar. Masses for the B and C
components calculated from the new orbital solution (M_(B+C) = 0.157 +/- 0.009
M_sun) are in excellent agreement with theoretical models, but do not match
empirical mass-luminosity tracks. The preliminary orbit of the A-BC system
reveals no mass excess for the A component, giving no indication for a
previously proposed fourth (D) component in LHS 1070.Comment: published in A&A, 2008, 484, 429; added CFHT acknowledgemen
Periodic Radio and H-alpha Emission from the L Dwarf Binary 2MASSW J0746425+200032: Exploring the Magnetic Field Topology and Radius of an L Dwarf
[Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical
observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio
emission, dominated by short-duration periodic pulses at 4.86 GHz with
P=124.32+/-0.11 min. The stability of the pulse profiles and arrival times
demonstrates that they are due to the rotational modulation of a B~1.7 kG
magnetic field. A quiescent non-variable component is also detected, likely due
to emission from a uniform large-scale field. The H-alpha emission exhibits
identical periodicity, but unlike the radio pulses it varies sinusoidally and
is offset by exactly 1/4 of a phase. The sinusoidal variations require
chromospheric emission from a large-scale field structure, with the radio
pulses likely emanating from the magnetic poles. While both light curves can be
explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out
a symmetric dipole topology since it would result in a phase lag of 1/2
(poloidal field) or zero (toroidal field). We therefore conclude that either
(i) the field is dominated by a quadrupole configuration, which can naturally
explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions
are not trivially aligned with the field. Regardless of the field topology, we
use the measured period along with the known rotation velocity (vsini=27 km/s),
and the binary orbital inclination (i=142 deg), to derive a radius for the
primary star of 0.078+/-0.010 R_sun. This is the first measurement of the
radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides
a constraint on the mass-radius relation below 0.1 M_sun. We find that the
radius is about 30% smaller than expected from theoretical models, even for an
age of a few Gyr.Comment: Submitted to Ap
THE CONTRIBUTION OF ENVIRONMENTAL AMENITIES TO AGRICULTURAL LAND VALUES: HEDONIC MODELLING USING GEOGRAPHIC INFORMATION SYSTEMS DATA
Geographic Information Systems (GIS) data are used in a hedonic model to measure the impact of recreational and scenic amenities on agricultural land values. Results indicate agricultural land values are determined by environmental amenities as well as production attributes. Significant amenity variables included scenic view, elk habitat and fishery productivity.Environmental Economics and Policy, Land Economics/Use,
Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. III. X-ray, Radio, and H-alpha Activity Trends in M and L Dwarfs
[Abridged] As part of our on-going investigation into the magnetic field
properties of ultracool dwarfs, we present simultaneous radio, X-ray, and
H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214,
LSR060230.4+391059, and 2MASSJ052338.2-140302). We do not detect X-ray or radio
emission from any of the three sources, despite previous detections of radio
emission from BRI0021 and 2M0523-14. Steady and variable H-alpha emission are
detected from 2M0523-14 and BRI0021, respectively, while no H-alpha emission is
detected from LSR0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the
number of ultracool dwarfs observed in X-rays, and triples the number of L
dwarfs, providing in addition the deepest limits to date, log(L_X/L_bol)<-5.
With this larger sample we find the first clear evidence for a substantial
reduction in X-ray activity, by about two orders of magnitude, from mid-M to
mid-L dwarfs. We find that the decline in both X-rays and H-alpha roughly
follows L_{X,Halpha}/L_bol ~ 10^[-0.4x(SP-M6)] for SP>M6. In the radio band,
however, the luminosity remains relatively unchanged from M0 to L4, leading to
a substantial increase in L_rad/L_bol. Our survey also provides the first
comprehensive set of simultaneous radio/X-ray/H-alpha observations of ultracool
dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond
spectral type M7, evolving smoothly from L_{\nu,rad}/L_X ~ 10^-15.5 to
~10^-11.5 Hz^-1 over the narrow spectral type range M7-M9. This breakdown
reflects the substantial reduction in X-ray activity beyond M7, but its
physical origin remains unclear since, as evidenced by the uniform radio
emission, there is no drop in the field dissipation and particle acceleration
efficiency.Comment: Submitted to ApJ; 19 pages, 10 figures, 5 table
What controls the large-scale magnetic fields of M dwarfs?
Observations of active M dwarfs show a broad variety of large-scale magnetic
fields encompassing dipole-dominated and multipolar geometries. We detail the
analogy between some anelastic dynamo simulations and spectropolarimetric
observations of 23 M stars. In numerical models, the relative contribution of
inertia and Coriolis force in the global force balance -estimated by the
so-called local Rossby number- is known to have a strong impact on the magnetic
field geometry. We discuss the relevance of this parameter in setting the
large-scale magnetic field of M dwarfs.Comment: 4 pages, 3 figures, conference proceeding, IAUS 302 'Magnetic Fields
Throughout the Stellar Evolution', (26-30 Aug 2013, Biarritz, France
What controls the magnetic geometry of M dwarfs?
Context: observations of rapidly rotating M dwarfs show a broad variety of
large-scale magnetic fields encompassing dipole-dominated and multipolar
geometries. In dynamo models, the relative importance of inertia in the force
balance -- quantified by the local Rossby number -- is known to have a strong
impact on the magnetic field geometry. Aims: we aim to assess the relevance of
the local Rossby number in controlling the large-scale magnetic field geometry
of M dwarfs. Methods: we explore the similarities between anelastic dynamo
models in spherical shells and observations of active M-dwarfs, focusing on
field geometries derived from spectropolarimetric studies. To do so, we
construct observation-based quantities aimed to reflect the diagnostic
parameters employed in numerical models. Results: the transition between
dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is
tentatively attributed to a Rossby number threshold. We interpret late M dwarfs
magnetism to result from a dynamo bistability occurring at low Rossby number.
By analogy with numerical models, we expect different amplitudes of
differential rotation on the two dynamo branches.Comment: 4 pages, 4 figures, accepted for publication in A&
Solving mazes with memristors: a massively-parallel approach
Solving mazes is not just a fun pastime. Mazes are prototype models in graph theory, topology, robotics, traffic optimization, psychology, and in many other areas of science and technology. However, when maze complexity increases their solution becomes cumbersome and very time consuming. Here, we show that a network of memristors - resistors with memory - can solve such a non-trivial problem quite easily. In particular, maze solving by the network of memristors occurs in a massively parallel fashion since all memristors in the network participate simultaneously in the calculation. The result of the calculation is then recorded into the memristors’ states, and can be used and/or recovered at a later time. Furthermore, the network of memristors finds all possible solutions in multiple-solution mazes, and sorts out the solution paths according to their length. Our results demonstrate not only the first application of memristive networks to the field of massively-parallel computing, but also a novel algorithm to solve mazes which could find applications in different research fields
Solar Magnetic Field Reversals and the Role of Dynamo Families
The variable magnetic field of the solar photosphere exhibits periodic
reversals as a result of dynamo activity occurring within the solar interior.
We decompose the surface field as observed by both the Wilcox Solar Observatory
and the Michelson Doppler Imager into its harmonic constituents, and present
the time evolution of the mode coefficients for the past three sunspot cycles.
The interplay between the various modes is then interpreted from the
perspective of general dynamo theory, where the coupling between the primary
and secondary families of modes is found to correlate with large-scale polarity
reversals for many examples of cyclic dynamos. Mean-field dynamos based on the
solar parameter regime are then used to explore how such couplings may result
in the various long-term trends in the surface magnetic field observed to occur
in the solar case.Comment: Accepted to ApJ; comments/corrections to this article are welcome via
e-mail, even after publicatio
Orbits and Masses in the multiple system LHS 1070
We present a study of the orbits of the triple system LHS1070, with the aim
to determine individual masses of its components.
Sixteen new relative astrometric positions of the three components in the K
band were obtained with NACO at the VLT, Omega CASS at the 3.5m telescope on
Calar Alto, and other high-spatial-resolution instruments. We combine them with
data from the literature and fit orbit models to the dataset. We derive an
improved fit for the orbit of LHS1070B and C around each other, and an estimate
for the orbit of B and C around A.
The orbits are nearly coplanar, with a misalignment angle of less than
10{\deg}. The masses of the three components are M_A = 0.13 - 0.16 Msun, M_B =
0.077+/-0.005 Msun, and M_C = 0.071+/-0.004 Msun. Therefore, LHS1070C is
certainly, and LHS1070B probably a brown dwarf. Comparison with theoretical
isochrones shows that LHS1070A is either fainter or more massive than expected.
One possible explanation would be that it is a binary. However, the close
companion reported previously could not be confirmed.Comment: 9 pages, 8 figures, accepted by Astronomy and Astrophysic
- …
