13,718 research outputs found
Detection of Dark Matter Concentrations in the Field of Cl 1604+4304 from Weak Lensing Analysis
We present a weak-lensing analysis of a region around the galaxy cluster Cl
1604+4304 (z=0.897) on the basis of the deep observations with the HST/WFPC2.
We apply a variant of Schneider's aperture mass technique to the observed WFPC2
field and obtain the distribution of weak-lensing signal-to-noise (S/N) ratio
within the field. The resulting S/N map reveals a clear pronounced peak located
about 1.7 arcmin (850h_{50}^{-1} kpc at z=0.897) southwest of the second peak
associated with the optical cluster center determined from the dynamical
analysis of Postman et al. A non-linear finite-field inversion method has been
used to reconstruct the projected mass distribution from the observed shear
field. The reconstructed mass map shows a super-critical feature at the
location of the S/N peak as well as in the cluster central region. Assuming the
redshift distribution of field galaxies, we obtain the total mass in the
observed field to be 1.0 h_{50}^{-1} 10^{15} M_sun for =1.0. The estimated
mass within a circular aperture of radius 280h_{50}^{-1} kpc centered on the
dark clump is 2.4h_{50}^{-1} 10^{14} M_sun. We have confirmed the existence of
the ` dark ' mass concentration from another deep HST observation with a
slightly different ~20 arcsec pointing.Comment: 7 pages, 3 figure
Performance of internal Covariance Estimators for Cosmic Shear Correlation Functions
Data re-sampling methods such as the delete-one jackknife are a common tool
for estimating the covariance of large scale structure probes. In this paper we
investigate the concepts of internal covariance estimation in the context of
cosmic shear two-point statistics. We demonstrate how to use log-normal
simulations of the convergence field and the corresponding shear field to carry
out realistic tests of internal covariance estimators and find that most
estimators such as jackknife or sub-sample covariance can reach a satisfactory
compromise between bias and variance of the estimated covariance.
In a forecast for the complete, 5-year DES survey we show that internally
estimated covariance matrices can provide a large fraction of the true
uncertainties on cosmological parameters in a 2D cosmic shear analysis. The
volume inside contours of constant likelihood in the -
plane as measured with internally estimated covariance matrices is on average
of the volume derived from the true covariance matrix. The
uncertainty on the parameter combination derived from internally estimated covariances is of
the true uncertainty.Comment: submitted to mnra
Reconstruction methods — P‾ANDA focussing-light guide disc DIRC
The Focussing-Lightguide Disc DIRC will provide crucial Particle Identification (PID) information for the P‾ANDA experiment at FAIR, GSI. This detector presents a challenging environment for reconstruction due to the complexity of the expected hit patterns and the operating conditions of the P‾ANDA experiment. A discussion of possible methods to reconstruct PID from this detector is given here. Reconstruction software is currently under development
The Phase Diagram of 1-in-3 Satisfiability Problem
We study the typical case properties of the 1-in-3 satisfiability problem,
the boolean satisfaction problem where a clause is satisfied by exactly one
literal, in an enlarged random ensemble parametrized by average connectivity
and probability of negation of a variable in a clause. Random 1-in-3
Satisfiability and Exact 3-Cover are special cases of this ensemble. We
interpolate between these cases from a region where satisfiability can be
typically decided for all connectivities in polynomial time to a region where
deciding satisfiability is hard, in some interval of connectivities. We derive
several rigorous results in the first region, and develop the
one-step--replica-symmetry-breaking cavity analysis in the second one. We
discuss the prediction for the transition between the almost surely satisfiable
and the almost surely unsatisfiable phase, and other structural properties of
the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure
End states, ladder compounds, and domain wall fermions
A magnetic field applied to a cross linked ladder compound can generate
isolated electronic states bound to the ends of the chain. After exploring the
interference phenomena responsible, I discuss a connection to the domain wall
approach to chiral fermions in lattice gauge theory. The robust nature of the
states under small variations of the bond strengths is tied to chiral symmetry
and the multiplicative renormalization of fermion masses.Comment: 10 pages, 4 figures; final version for Phys. Rev. Let
The dual parameterization of the proton generalized parton distribution functions H and E and description of the DVCS cross sections and asymmetries
We develop the minimal model of a new leading order parameterization of GPDs
introduced by Shuvaev and Polyakov. The model for GPDs H and E is formulated in
terms of the forward quark distributions, the Gegenbauer moments of the D-term
and the forward limit of the GPD E. The model is designed primarely for small
and medium-size values of x_B, x_B \leq 0.2.
We examined two different models of the t-dependence of the GPDs: The
factorized exponential model and the non-factorized Regge-motivated model.
Using our model, we successfully described the DVCS cross section measured by
H1 and ZEUS, the moments of the beam-spin A_{LU}^{\sin \phi}, beam-charge
A_{C}^{\cos \phi} and transversely-polarized target A_{UT}^{\sin \phi \cos
\phi} DVCS asymmetries measured by HERMES and A_{LU}^{\sin \phi} measured by
CLAS. The data on A_{C}^{\cos \phi} prefers the Regge-motivated model of the
t-dependence of the GPDs. The data on A_{UT}^{\sin \phi \cos \phi} indicates
that the u and d quarks carry only a small fraction of the proton total angular
momentum.Comment: 33 pages, 11 figure
HST/ACS weak lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24
We present a weak lensing analysis of one of the most distant massive galaxy
cluster known, RDCS 1252.9-2927 at z=1.24, using deep images from the Advanced
Camera for Survey (ACS) on board the Hubble Space Telescope (HST). By taking
advantage of the depth and of the angular resolution of the ACS images, we
detect for the first time at z>1 a clear weak lensing signal in both the i
(F775W) and z (F850LP) filters. We measure a 5-\sigma signal in the i band and
a 3-\sigma signal in the shallower z band image. The two radial mass profiles
are found to be in very good agreement with each other, and provide a
measurement of the total mass of the cluster inside a 1Mpc radius of M(<1Mpc) =
(8.0 +/- 1.3) x 10^14 M_\odot in the current cosmological concordance model h
=0.70, \Omega_m=0.3, \Omega_\Lambda=0.7, assuming a redshift distribution of
background galaxies as inferred from the Hubble Deep Fields surveys. A weak
lensing signal is detected out to the boundary of our field (3' radius,
corresponding to 1.5Mpc at the cluster redshift). We detect a small offset
between the centroid of the weak lensing mass map and the brightest cluster
galaxy, and we discuss the possible origin of this discrepancy. The cumulative
weak lensing radial mass profile is found to be in good agreement with the
X-ray mass estimate based on Chandr and XMM-Newton observations, at least out
to R_500=0.5Mpc.Comment: 38 pages, ApJ in press. Full resolution images available at
http://www.eso.org/~prosati/RDCS1252/Lombardi_etal_accepted.pd
Galaxies at z=4 and the Formation of Population II
We report the discovery of four high-redshift objects (3.3 < z < 4) observed
behind the rich cluster CL0939+4713 (Abell 851). One object (DG 433) has a
redshift of z=3.3453; the other three objects have redshifts of z\approx 4: A0
at z=3.9819, DG 353 and P1/P2 at z=3.9822. It is possible that all four objects
are being lensed in some way by the cluster, DG 433 being weakly sheared, A0
being strongly sheared, and DG 353 and P1/P2 being an image pair of a common
source object; detailed modelling of the cluster potential will be necessary to
confirm this hypothesis. The weakness of common stellar wind features like N V
and especially C IV in the spectra of these objects argues for sub-solar
metallicities, at least as low as the SMC. DG 353 and DG 433, which have
ground-based colors, are moderately dusty [E_{int}(B-V) < 0.15], similar to
other z>3 galaxies. Star formation rates range from 2.5 (7.8) h^{-2} to 22.
(78.) h^{-2} M_{\odot}/yr, for q_0=0.5 (0.05), depending on assumptions about
gravitational lensing and extinction, also typical of other z>3 galaxies. These
objects are tenatively identified as the low-metallicity proto-spheroid clumps
that will merge to form the Population II components of today's spheroids.Comment: 16 pages, including 2 PostScript figures. Needs aaspp4.sty
(included). Accepted for publication in the Astrophysical Journa
High-Redshift Galaxies: Their Predicted Size and Surface Brightness Distributions and Their Gravitational Lensing Probability
Direct observations of the first generation of luminous objects will likely
become feasible over the next decade. The advent of the Next Generation Space
Telescope (NGST) will allow imaging of numerous galaxies and mini-quasars at
redshifts z>5. We apply semi-analytic models of structure formation to estimate
the rate of multiple imaging of these sources by intervening gravitational
lenses. Popular CDM models for galaxy formation yield a lensing optical depth
of about 1% for sources at redshift 10. The expected slope of the luminosity
function of the early sources implies an additional magnification bias of about
5, bringing the fraction of lensed sources at z=10 to about 5%. We estimate the
angular size distribution of high-redshift disk galaxies and find that most of
them are more extended than the resolution limit of NGST, roughly 0.06
arcseconds. We also show that there is only a modest redshift evolution in the
mean surface brightness of galaxies at z>2. The expected increase by 1-2 orders
of magnitude in the number of resolved sources on the sky, due to observations
with NGST, will dramatically improve upon the statistical significance of
existing weak lensing measurements. We show that, despite this increase in the
density of sources, confusion noise from z>2 galaxies is expected to be small
for NGST observations.Comment: 27 pages, 8 PostScript figures (of which two are new), revised
version accepted for Ap
Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class
The probability P(alpha, N) that search algorithms for random Satisfiability
problems successfully find a solution is studied as a function of the ratio
alpha of constraints per variable and the number N of variables. P is shown to
be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and
exponentially small in N above. The critical behaviour is universal for all
algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon)
alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to
the critical behaviour of random graphs, and the scaling function Phi is
exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure
- …
