936 research outputs found

    Healthy eating away-from-home: effects of dining occasion and the number of menu items

    Get PDF
    Consumers are reported to be increasingly concerned about their health. Nonetheless, consumers show different attitudes toward food at home and away from home. In particular, consumers tend to shy away from healthy food items when dining on special occasions. This study is the first to look into the number of healthy menu items provided to consumers during dining occasions. The impacts of two independent variables (dining occasion: normal vs. special; number of healthy items: limited vs. extended) on consumers’ dining menu selection was examined among female university students. The results of this study indicate that both dining occasion and the number of healthy items offered could influence consumers’ food selection independently. Although consumers are more likely to choose unhealthy items while dining’on special occasions, offering more healthy items would increase the probability of healthy eating. This study also offers some insights into the food categories and cooking methods favored by consumers. Further studies should explore other potential foods that would enhance the selection of healthy options by consumers

    On some geometric features of the Kramer interior solution for a rotating perfect fluid

    Get PDF
    Geometric features (including convexity properties) of an exact interior gravitational field due to a self-gravitating axisymmetric body of perfect fluid in stationary, rigid rotation are studied. In spite of the seemingly non-Newtonian features of the bounding surface for some rotation rates, we show, by means of a detailed analysis of the three-dimensional spatial geodesics, that the standard Newtonian convexity properties do hold. A central role is played by a family of geodesics that are introduced here, and provide a generalization of the Newtonian straight lines parallel to the axis of rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical and Quantum Gravit

    Carrier dynamics and coherent acoustic phonons in nitride heterostructures

    Full text link
    We model generation and propagation of coherent acoustic phonons in piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode structure and compute the time resolved reflectivity signal in simulated pump-probe experiments. Carriers are created in the InGaN wells by ultrafast pumping below the GaN band gap and the dynamics of the photoexcited carriers is treated in a Boltzmann equation framework. Coherent acoustic phonons are generated in the quantum well via both deformation potential electron-phonon and piezoelectric electron-phonon interaction with photogenerated carriers, with the latter mechanism being the dominant one. Coherent longitudinal acoustic phonons propagate into the structure at the sound speed modifying the optical properties and giving rise to a giant oscillatory differential reflectivity signal. We demonstrate that coherent optical control of the differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure

    The mean curvature of cylindrically bounded submanifolds

    Full text link
    We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder B(r)×RB(r)\times\R^{\ell} in a product Riemannian manifold Nn×RN^{n-\ell}\times\R^{\ell}. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.Comment: First version (December 2008). Final version, including new title (February 2009). To appear in Mathematische Annale

    Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic sequences

    Full text link
    The conserved densities of hydrodynamic type system in Riemann invariants satisfy a system of linear second order partial differential equations. For linear systems of this type Darboux introduced Laplace transformations, generalising the classical transformations in the scalar case. It is demonstrated that Laplace transformations can be pulled back to the transformations of the corresponding hydrodynamic type systems. We discuss periodic Laplace sequences of with the emphasize on the simplest nontrivial case of period 2. For 3-component systems in Riemann invariants a complete discription of closed quadruples is proposed. They turn to be related to a special quadratic reduction of the (2+1)-dimensional 3-wave system which can be reduced to a triple of pairwize commuting Monge-Ampere equations. In terms of the Lame and rotation coefficients Laplace transformations have a natural interpretation as the symmetries of the Dirac operator, associated with the (2+1)-dimensional n-wave system. The 2-component Laplace transformations can be interpreted also as the symmetries of the (2+1)-dimensional integrable equations of Davey-Stewartson type. Laplace transformations of hydrodynamic type systems originate from a canonical geometric correspondence between systems of conservation laws and line congruences in projective space.Comment: 22 pages, Late

    Gravitational Chern-Simons Lagrangians and black hole entropy

    Get PDF
    We analyze the problem of defining the black hole entropy when Chern-Simons terms are present in the action. Extending previous works, we define a general procedure, valid in any odd dimensions both for purely gravitational CS terms and for mixed gauge-gravitational ones. The final formula is very similar to Wald's original formula valid for covariant actions, with a significant modification. Notwithstanding an apparent violation of covariance we argue that the entropy formula is indeed covariant.Comment: 39 page

    The Random Discrete Action for 2-Dimensional Spacetime

    Full text link
    A one-parameter family of random variables, called the Discrete Action, is defined for a 2-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this Discrete Action is calculated for various regions of 2D Minkowski spacetime. When a causally convex region of 2D Minkowski spacetime is divided into subregions using null lines the mean of the Discrete Action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to zero as the discreteness scale is taken to zero. This result is used to predict that the mean of the Discrete Action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The ``topological'' character of the Discrete Action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.Comment: 20 pages, 10 figures, Typos correcte

    Anti-self-dual Riemannian metrics without Killing vectors, can they be realized on K3?

    Full text link
    Explicit Riemannian metrics with Euclidean signature and anti-self dual curvature that do not admit any Killing vectors are presented. The metric and the Riemann curvature scalars are homogenous functions of degree zero in a single real potential and its derivatives. The solution for the potential is a sum of exponential functions which suggests that for the choice of a suitable domain of coordinates and parameters it can be the metric on a compact manifold. Then, by the theorem of Hitchin, it could be a class of metrics on K3K3, or on surfaces whose universal covering is K3K3.Comment: Misprints in eqs.(9-11) corrected. Submitted to Classical and Quantum Gravit

    Nonlinear hyperbolic systems: Non-degenerate flux, inner speed variation, and graph solutions

    Full text link
    We study the Cauchy problem for general, nonlinear, strictly hyperbolic systems of partial differential equations in one space variable. First, we re-visit the construction of the solution to the Riemann problem and introduce the notion of a nondegenerate (ND) system. This is the optimal condition guaranteeing, as we show it, that the Riemann problem can be solved with finitely many waves, only; we establish that the ND condition is generic in the sense of Baire (for the Whitney topology), so that any system can be approached by a ND system. Second, we introduce the concept of inner speed variation and we derive new interaction estimates on wave speeds. Third, we design a wave front tracking scheme and establish its strong convergence to the entropy solution of the Cauchy problem; this provides a new existence proof as well as an approximation algorithm. As an application, we investigate the time-regularity of the graph solutions (X,U)(X,U) introduced by the second author, and propose a geometric version of our scheme; in turn, the spatial component XX of a graph solution can be chosen to be continuous in both time and space, while its component UU is continuous in space and has bounded variation in time.Comment: 74 page
    corecore