936 research outputs found
Healthy eating away-from-home: effects of dining occasion and the number of menu items
Consumers are reported to be increasingly concerned about their health. Nonetheless, consumers show different attitudes toward food at home and away from home. In particular, consumers tend to shy away from healthy food items when dining on special occasions. This study is the first to look into the number of healthy menu items provided to consumers during dining occasions. The impacts of two independent variables (dining occasion: normal vs. special; number of healthy items: limited vs. extended)
on consumers’ dining menu selection was examined among female university students. The results of this study indicate that both dining occasion and the number of healthy items offered could influence consumers’ food selection independently. Although consumers are more likely to choose unhealthy items while dining’on special occasions, offering more healthy items would increase the probability of healthy eating. This study also offers some insights into the food categories and cooking methods favored by consumers. Further studies should explore other potential foods that would enhance the selection of healthy options by consumers
On some geometric features of the Kramer interior solution for a rotating perfect fluid
Geometric features (including convexity properties) of an exact interior
gravitational field due to a self-gravitating axisymmetric body of perfect
fluid in stationary, rigid rotation are studied. In spite of the seemingly
non-Newtonian features of the bounding surface for some rotation rates, we
show, by means of a detailed analysis of the three-dimensional spatial
geodesics, that the standard Newtonian convexity properties do hold. A central
role is played by a family of geodesics that are introduced here, and provide a
generalization of the Newtonian straight lines parallel to the axis of
rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical
and Quantum Gravit
Carrier dynamics and coherent acoustic phonons in nitride heterostructures
We model generation and propagation of coherent acoustic phonons in
piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode
structure and compute the time resolved reflectivity signal in simulated
pump-probe experiments. Carriers are created in the InGaN wells by ultrafast
pumping below the GaN band gap and the dynamics of the photoexcited carriers is
treated in a Boltzmann equation framework. Coherent acoustic phonons are
generated in the quantum well via both deformation potential electron-phonon
and piezoelectric electron-phonon interaction with photogenerated carriers,
with the latter mechanism being the dominant one. Coherent longitudinal
acoustic phonons propagate into the structure at the sound speed modifying the
optical properties and giving rise to a giant oscillatory differential
reflectivity signal. We demonstrate that coherent optical control of the
differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure
The mean curvature of cylindrically bounded submanifolds
We give an estimate of the mean curvature of a complete submanifold lying
inside a closed cylinder in a product Riemannian manifold
. It follows that a complete hypersurface of given
constant mean curvature lying inside a closed circular cylinder in Euclidean
space cannot be proper if the circular base is of sufficiently small radius. In
particular, any possible counterexample to a conjecture of Calabion complete
minimal hypersurfaces cannot be proper. As another application of our method,
we derive a result about the stochastic incompleteness of submanifolds with
sufficiently small mean curvature.Comment: First version (December 2008). Final version, including new title
(February 2009). To appear in Mathematische Annale
Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic sequences
The conserved densities of hydrodynamic type system in Riemann invariants
satisfy a system of linear second order partial differential equations. For
linear systems of this type Darboux introduced Laplace transformations,
generalising the classical transformations in the scalar case. It is
demonstrated that Laplace transformations can be pulled back to the
transformations of the corresponding hydrodynamic type systems. We discuss
periodic Laplace sequences of with the emphasize on the simplest nontrivial
case of period 2. For 3-component systems in Riemann invariants a complete
discription of closed quadruples is proposed. They turn to be related to a
special quadratic reduction of the (2+1)-dimensional 3-wave system which can be
reduced to a triple of pairwize commuting Monge-Ampere equations. In terms of
the Lame and rotation coefficients Laplace transformations have a natural
interpretation as the symmetries of the Dirac operator, associated with the
(2+1)-dimensional n-wave system. The 2-component Laplace transformations can be
interpreted also as the symmetries of the (2+1)-dimensional integrable
equations of Davey-Stewartson type. Laplace transformations of hydrodynamic
type systems originate from a canonical geometric correspondence between
systems of conservation laws and line congruences in projective space.Comment: 22 pages, Late
Gravitational Chern-Simons Lagrangians and black hole entropy
We analyze the problem of defining the black hole entropy when Chern-Simons
terms are present in the action. Extending previous works, we define a general
procedure, valid in any odd dimensions both for purely gravitational CS terms
and for mixed gauge-gravitational ones. The final formula is very similar to
Wald's original formula valid for covariant actions, with a significant
modification. Notwithstanding an apparent violation of covariance we argue that
the entropy formula is indeed covariant.Comment: 39 page
The Random Discrete Action for 2-Dimensional Spacetime
A one-parameter family of random variables, called the Discrete Action, is
defined for a 2-dimensional Lorentzian spacetime of finite volume. The single
parameter is a discreteness scale. The expectation value of this Discrete
Action is calculated for various regions of 2D Minkowski spacetime. When a
causally convex region of 2D Minkowski spacetime is divided into subregions
using null lines the mean of the Discrete Action is equal to the alternating
sum of the numbers of vertices, edges and faces of the null tiling, up to
corrections that tend to zero as the discreteness scale is taken to zero. This
result is used to predict that the mean of the Discrete Action of the flat
Lorentzian cylinder is zero up to corrections, which is verified. The
``topological'' character of the Discrete Action breaks down for causally
convex regions of the flat trousers spacetime that contain the singularity and
for non-causally convex rectangles.Comment: 20 pages, 10 figures, Typos correcte
Anti-self-dual Riemannian metrics without Killing vectors, can they be realized on K3?
Explicit Riemannian metrics with Euclidean signature and anti-self dual
curvature that do not admit any Killing vectors are presented. The metric and
the Riemann curvature scalars are homogenous functions of degree zero in a
single real potential and its derivatives. The solution for the potential is a
sum of exponential functions which suggests that for the choice of a suitable
domain of coordinates and parameters it can be the metric on a compact
manifold. Then, by the theorem of Hitchin, it could be a class of metrics on
, or on surfaces whose universal covering is .Comment: Misprints in eqs.(9-11) corrected. Submitted to Classical and Quantum
Gravit
Nonlinear hyperbolic systems: Non-degenerate flux, inner speed variation, and graph solutions
We study the Cauchy problem for general, nonlinear, strictly hyperbolic
systems of partial differential equations in one space variable. First, we
re-visit the construction of the solution to the Riemann problem and introduce
the notion of a nondegenerate (ND) system. This is the optimal condition
guaranteeing, as we show it, that the Riemann problem can be solved with
finitely many waves, only; we establish that the ND condition is generic in the
sense of Baire (for the Whitney topology), so that any system can be approached
by a ND system. Second, we introduce the concept of inner speed variation and
we derive new interaction estimates on wave speeds. Third, we design a wave
front tracking scheme and establish its strong convergence to the entropy
solution of the Cauchy problem; this provides a new existence proof as well as
an approximation algorithm. As an application, we investigate the
time-regularity of the graph solutions introduced by the second author,
and propose a geometric version of our scheme; in turn, the spatial component
of a graph solution can be chosen to be continuous in both time and space,
while its component is continuous in space and has bounded variation in
time.Comment: 74 page
- …
