44,258 research outputs found
Spinor Bose Condensates in Optical Traps
In an optical trap, the ground state of spin-1 Bosons such as Na,
K, and Rb can be either a ferromagnetic or a "polar" state,
depending on the scattering lengths in different angular momentum channel. The
collective modes of these states have very different spin character and spatial
distributions. While ordinary vortices are stable in the polar state, only
those with unit circulation are stable in the ferromagnetic state. The
ferromagnetic state also has coreless (or Skyrmion) vortices like those of
superfluid He-A. Current estimates of scattering lengths suggest that the
ground states of Na and Rb condensate are a polar state and a
ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]
Global banking and national regulation: a conference summary
Although banking across national borders has expanded rapidly, banking regulation remains nationally based. As a result, governments and financial institutions face significant challenges when instability arises. At the Chicago Fed’s International Banking Conference, participants explored cross-border banking issues and ways to improve the current system.Banks and banking, International ; Interstate banking
Development of aircraft brake materials
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5)
Boson Mott insulators at finite temperatures
We discuss the finite temperature properties of ultracold bosons in optical
lattices in the presence of an additional, smoothly varying potential, as in
current experiments. Three regimes emerge in the phase diagram: a
low-temperature Mott regime similar to the zero-temperature quantum phase, an
intermediate regime where MI features persist, but where superfluidity is
absent, and a thermal regime where features of the Mott insulator state have
disappeared. We obtain the thermodynamic functions of the Mott phase in the
latter cases. The results are used to estimate the temperatures achieved by
adiabatic loading in current experiments. We point out the crucial role of the
trapping potential in determining the final temperature, and suggest a scheme
for further cooling by adiabatic decompression
Rapidly Rotating Fermi Gases
We show that the density profile of a Fermi gas in rapidly rotating potential
will develop prominent features reflecting the underlying Landau level like
energy spectrum. Depending on the aspect ratio of the trap, these features can
be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil
Circumbinary Molecular Rings Around Young Stars in Orion
We present high angular resolution 1.3 mm continuum, methyl cyanide molecular
line, and 7 mm continuum observations made with the Submillimeter Array and the
Very Large Array, toward the most highly obscured and southern part of the
massive star forming region OMC1S located behind the Orion Nebula. We find two
flattened and rotating molecular structures with sizes of a few hundred
astronomical units suggestive of circumbinary molecular rings produced by the
presence of two stars with very compact circumstellar disks with sizes and
separations of about 50 AU, associated with the young stellar objects 139-409
and 134-411. Furthermore, these two circumbinary rotating rings are related to
two compact and bright {\it hot molecular cores}. The dynamic mass of the
binary systems obtained from our data are 4 M for 139-409 and
0.5 M for 134-411. This result supports the idea that
intermediate-mass stars will form through {\it circumstellar disks} and
jets/outflows, as the low mass stars do. Furthermore, when intermediate-mass
stars are in multiple systems they seem to form a circumbinary ring similar to
those seen in young, multiple low-mass systems (e.g., GG Tau and UY Aur).Comment: Accepted by Astronomy and Astrophysic
Nuclear star formation on 100 parsec scales: 10" resolution radio continuum, HI and CO observations
A program of radio line and continuum studies of star formation in nearby spiral galaxies is reported. The objective is a search for hot gas and peculiar dynamics in spiral nuclei with 10" to 30" angular resolution. Vigorous star formation is found to be a common phenomenon in the inner kpc of spirals. Arcsecond resolution observations of radio continuum emission at 6 and 2 cm were used to separate the thermal and nonthermal radio components. It was found that thermal and nonthermal emission are well mixed even on sizescales of 10 pc. To understand the reason for the increased level of star formation activity in spiral nuclei, HI and CO emission in these galaxies is studied. The CO transition was detected in M51, M82, NGC 253, NGC 6946 and IC 342 with T sub a approx. 0.5 to 2.0 K, at 20" angular resolution. The dynamics and spatial distribution of nuclear gas are being studied using VLA HI maps with 30" synthesized beams. Evidence for noncircular motions in HI was found in the nucleus of IC 342
Competition between Vortex Unbinding and Tunneling in an Optical Lattice
We study a system of two-dimensional Bose gases trapped in minima of a deep
one-dimensional optical lattice potential. Increasing the tunneling amplitude
between adjacent gases drives a deconfinement transition to a phase where
coherence is established between neighboring two-dimensional gases. We compute
the signature of this transition in the interference pattern of the system as
well as in its rotational response, which provides a direct measurement of the
superfluidity in the system.Comment: 4+ pages, 1 figur
Theory of spin-2 Bose-Einstein condensates: spin-correlations, magnetic response, and excitation spectra
The ground states of Bose-Einstein condensates of spin-2 bosons are
classified into three distinct (ferromagnetic, ^^ ^^ antiferromagnetic", and
cyclic) phases depending on the s-wave scattering lengths of binary collisions
for total-spin 0, 2, and 4 channels. Many-body spin correlations and magnetic
response of the condensate in each of these phases are studied in a mesoscopic
regime, while low-lying excitation spectra are investigated in the hermodynamic
regime. In the mesoscopic regime, where the system is so tightly confined that
the spatial degrees of freedom are frozen, the exact, many-body ground state
for each phase is found to be expressed in terms of the creation operators of
pair or trio bosons having spin correlations. These pairwise and trio-wise
units are shown to bring about some unique features of spin-2 BECs such as a
huge jump in magnetization from minimum to maximum possible values and the
robustness of the minimum-magnetization state against an applied agnetic field.
In the thermodynamic regime, where the system is spatially uniform, low-lying
excitation spectra in the presence of magnetic field are obtained analytically
using the Bogoliubov approximation. In the ferromagnetic phase, the excitation
spectrum consists of one Goldstone mode and four single-particle modes. In the
antiferromagnetic phase, where spin-singlet ^^ ^^ pairs" undergo Bose-Einstein
condensation, the spectrum consists of two Goldstone modes and three massive
ones, all of which become massless when magnetic field vanishes. In the cyclic
phase, where boson ^^ ^^ trios" condense into a spin-singlet state, the
spectrum is characterized by two Goldstone modes, one single-particle mode
having a magnetic-field-independent energy gap, and a gapless single-particle
mode that becomes massless in the absence of magnetic field.Comment: 28 pages, 4 figure
- …
