1,413 research outputs found
Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel
Yukawa Couplings in Heterotic Standard Models
In this paper, we present a formalism for computing the Yukawa couplings in
heterotic standard models. This is accomplished by calculating the relevant
triple products of cohomology groups, leading to terms proportional to Q*H*u,
Q*Hbar*d, L*H*nu and L*Hbar*e in the low energy superpotential. These
interactions are subject to two very restrictive selection rules arising from
the geometry of the Calabi-Yau manifold. We apply our formalism to the
"minimal" heterotic standard model whose observable sector matter spectrum is
exactly that of the MSSM. The non-vanishing Yukawa interactions are explicitly
computed in this context. These interactions exhibit a texture rendering one
out of the three quark/lepton families naturally light.Comment: 21 pages, LaTe
Stability of the Minimal Heterotic Standard Model Bundle
The observable sector of the "minimal heterotic standard model" has precisely
the matter spectrum of the MSSM: three families of quarks and leptons, each
with a right-handed neutrino, and one Higgs-Higgs conjugate pair. In this
paper, it is explicitly proven that the SU(4) holomorphic vector bundle leading
to the MSSM spectrum in the observable sector is slope-stable.Comment: LaTeX, 19 page
Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)
A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4–0.7 PE), acidification (–0.06 (saving)–1.6 PE), nutrient enrichment (–1.0 (saving)–3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment
Separable potential model for interactions at low energies
The effective separable meson-baryon potentials are constructed to match the
equivalent chiral amplitudes up to the second order in external meson momenta.
We fit the model parameters (low energy constants) to the threshold and low
energy data. In the process, the -proton bound state problem is
solved exactly in the momentum space and the 1s level characteristics of the
kaonic hydrogen are computed simultaneously with the available low energy
cross sections. The model is also used to describe the
mass spectrum and the energy dependence of the amplitude.Comment: 31 pages, v2 - added corrections to make it compatible with the
published versio
High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes
The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively
Classical and Quantum Nambu Mechanics
The classical and quantum features of Nambu mechanics are analyzed and
fundamental issues are resolved. The classical theory is reviewed and developed
utilizing varied examples. The quantum theory is discussed in a parallel
presentation, and illustrated with detailed specific cases. Quantization is
carried out with standard Hilbert space methods. With the proper physical
interpretation, obtained by allowing for different time scales on different
invariant sectors of a theory, the resulting non-Abelian approach to quantum
Nambu mechanics is shown to be fully consistent.Comment: 44 pages, 1 figure, 1 table Minor changes to conform to journal
versio
Chemical telemetry of OH observed to measure interstellar magnetic fields
We present models for the chemistry in gas moving towards the ionization
front of an HII region. When it is far from the ionization front, the gas is
highly depleted of elements more massive than helium. However, as it approaches
the ionization front, ices are destroyed and species formed on the grain
surfaces are injected into the gas phase. Photodissociation removes gas phase
molecular species as the gas flows towards the ionization front. We identify
models for which the OH column densities are comparable to those measured in
observations undertaken to study the magnetic fields in star forming regions
and give results for the column densities of other species that should be
abundant if the observed OH arises through a combination of the liberation of
H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S.
Observations of these other species may help establish the nature of the OH
spatial distribution in the clouds, which is important for the interpretation
of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc
Moduli Dependent mu-Terms in a Heterotic Standard Model
In this paper, we present a formalism for computing the non-vanishing Higgs
mu-terms in a heterotic standard model. This is accomplished by calculating the
cubic product of the cohomology groups associated with the vector bundle moduli
(phi), Higgs (H) and Higgs conjugate (Hbar) superfields. This leads to terms
proportional to phi H Hbar in the low energy superpotential which, for non-zero
moduli expectation values, generate moduli dependent mu-terms of the form
H Hbar. It is found that these interactions are subject to two very restrictive
selection rules, each arising from a Leray spectral sequence, which greatly
reduce the number of moduli that can couple to Higgs-Higgs conjugate fields. We
apply our formalism to a specific heterotic standard model vacuum. The
non-vanishing cubic interactions phi H Hbar are explicitly computed in this
context and shown to contain only four of the nineteen vector bundle moduli.Comment: 23 pages, LaTe
The Exact MSSM Spectrum from String Theory
We show the existence of realistic vacua in string theory whose observable
sector has exactly the matter content of the MSSM. This is achieved by
compactifying the E_8 x E_8 heterotic superstring on a smooth Calabi-Yau
threefold with an SU(4) gauge instanton and a Z_3 x Z_3 Wilson line.
Specifically, the observable sector is N=1 supersymmetric with gauge group
SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}, three families of quarks and leptons,
each family with a right-handed neutrino, and one Higgs-Higgs conjugate pair.
Importantly, there are no extra vector-like pairs and no exotic matter in the
zero mode spectrum. There are, in addition, 6 geometric moduli and 13 gauge
instanton moduli in the observable sector. The holomorphic SU(4) vector bundle
of the observable sector is slope-stable.Comment: 15 pages, LaTeX; v2: Hidden sector is unstable, symbol typesetting
error corrected, clarifications and references added; v3: New discussion of
hidden secto
- …
