737 research outputs found
Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites
Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.
Quantum critical point in a periodic Anderson model
We investigate the symmetric Periodic Anderson Model (PAM) on a
three-dimensional cubic lattice with nearest-neighbor hopping and hybridization
matrix elements. Using Gutzwiller's variational method and the Hubbard-III
approximation (which corresponds to the exact solution of an appropriate
Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a
quantum critical point at zero temperature. Below a critical value of the
hybridization (or above a critical interaction ) the system is an {\em
insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach,
whereas above (below ) it behaves like a metal in both
approximations. These predictions are compared with the density of states of
the - and -bands calculated from Quantum Monte Carlo and NRG
calculations. Our conclusion is that the half-filled symmetric PAM contains a
{\em metal-semimetal transition}, not a metal-insulator transition as has been
suggested previously.Comment: ReVteX, 10 pages, 2 EPS figures. Minor corrections made in the text
and in the figure captions from the first version. More references added.
Accepted for publication in Physical Review
Interaction Effect in the Kondo Energy of the Periodic Anderson-Hubbard Model
We extend the periodic Anderson model by switching on a Hubbard for the
conduction electrons. The nearly integral valent (Kondo) limit of the
Anderson--Hubbard model is studied with the Gutzwiller variational method. The
new formula for the Kondo energy contains the -dependent chemical
potential of the Hubbard subsystem in the exponent, and the correlation-induced
band narrowing in the prefactor. Both effects tend to suppress the Kondo scale,
which can be understood to result from the blocking of hybridization (this
behaviour is the opposite of that found for Kondo--Hubbard models). At
half-filling, we find a Brinkman--Rice-type transition which leads from a
small-gap Kondo insulator to a Mott insulator.Comment: 4 pages (ReVTeX), submitted for publicatio
Dynamics of a deformable self-propelled particle under external forcing
We investigate dynamics of a self-propelled deformable particle under
external field in two dimensions based on the model equations for the center of
mass and a tensor variable characterizing deformations. We consider two kinds
of external force. One is a gravitational-like force which enters additively in
the time-evolution equation for the center of mass. The other is an
electric-like force supposing that a dipole moment is induced in the particle.
This force is added to the equation for the deformation tensor. It is shown
that a rich variety of dynamics appears by changing the strength of the forces
and the migration velocity of self-propelled particle
Effective Lagrangian for and Vertices in the mSUGRA model
Complete expressions of the and vertices are
derived in the framework of supersymmetry with minimal flavor violation. With
the minimal supergravity (mSUGRA) model, a numerical analysis of the
supersymmetric contributions to the Wilson Coefficients at the weak scale is
presented.Comment: 12 pages + 7 ps figures, Late
A parametrization for the growth index of linear matter perturbations
We propose a parametrization for the growth index of the linear matter
perturbations, . The growth factor of
the perturbations parameterized as is analyzed for both the
CDM model and the DGP model with our proposed form for . We find
that is negative for the CDM model but is positive for the DGP
model. Thus it provides another signature to discriminate them. We demonstrate
that with taking our proposed form approximates
the growth factor very well both at low and high redshfits for both kinds of
models. In fact, the error is below 0.03% for the CDM model and 0.18%
for the DGP model for all redshifts when . Therefore, our
parametrization may be robustly used to constrain the growth index of different
models with the observational data which include points for redshifts ranging
from 0.15 to 3.8, thus providing discriminative signatures for different
models.Comment: 14 pages, 6 figures; Added reference
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
- …
