737 research outputs found

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

    Quantum critical point in a periodic Anderson model

    Full text link
    We investigate the symmetric Periodic Anderson Model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwiller's variational method and the Hubbard-III approximation (which corresponds to the exact solution of an appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value VcV_c of the hybridization (or above a critical interaction UcU_c) the system is an {\em insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach, whereas above VcV_c (below UcU_c) it behaves like a metal in both approximations. These predictions are compared with the density of states of the dd- and ff-bands calculated from Quantum Monte Carlo and NRG calculations. Our conclusion is that the half-filled symmetric PAM contains a {\em metal-semimetal transition}, not a metal-insulator transition as has been suggested previously.Comment: ReVteX, 10 pages, 2 EPS figures. Minor corrections made in the text and in the figure captions from the first version. More references added. Accepted for publication in Physical Review

    Interaction Effect in the Kondo Energy of the Periodic Anderson-Hubbard Model

    Full text link
    We extend the periodic Anderson model by switching on a Hubbard UdU_d for the conduction electrons. The nearly integral valent (Kondo) limit of the Anderson--Hubbard model is studied with the Gutzwiller variational method. The new formula for the Kondo energy contains the UdU_d-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization (this behaviour is the opposite of that found for Kondo--Hubbard models). At half-filling, we find a Brinkman--Rice-type transition which leads from a small-gap Kondo insulator to a Mott insulator.Comment: 4 pages (ReVTeX), submitted for publicatio

    Dynamics of a deformable self-propelled particle under external forcing

    Full text link
    We investigate dynamics of a self-propelled deformable particle under external field in two dimensions based on the model equations for the center of mass and a tensor variable characterizing deformations. We consider two kinds of external force. One is a gravitational-like force which enters additively in the time-evolution equation for the center of mass. The other is an electric-like force supposing that a dipole moment is induced in the particle. This force is added to the equation for the deformation tensor. It is shown that a rich variety of dynamics appears by changing the strength of the forces and the migration velocity of self-propelled particle

    Effective Lagrangian for sˉbg\bar{s}bg and sˉbγ\bar{s}b\gamma Vertices in the mSUGRA model

    Full text link
    Complete expressions of the sˉbg\bar{s}bg and sˉbγ\bar{s}b\gamma vertices are derived in the framework of supersymmetry with minimal flavor violation. With the minimal supergravity (mSUGRA) model, a numerical analysis of the supersymmetric contributions to the Wilson Coefficients at the weak scale is presented.Comment: 12 pages + 7 ps figures, Late

    A parametrization for the growth index of linear matter perturbations

    Full text link
    We propose a parametrization for the growth index of the linear matter perturbations, γ(z)=γ0+z1+zγ1\gamma(z)=\gamma_0+\frac{z}{1+z}\gamma_1. The growth factor of the perturbations parameterized as Ωmγ\Omega_m^{\gamma} is analyzed for both the wwCDM model and the DGP model with our proposed form for γ\gamma. We find that γ1\gamma_1 is negative for the wwCDM model but is positive for the DGP model. Thus it provides another signature to discriminate them. We demonstrate that Ωmγ\Omega_m^{\gamma} with γ\gamma taking our proposed form approximates the growth factor very well both at low and high redshfits for both kinds of models. In fact, the error is below 0.03% for the Λ\LambdaCDM model and 0.18% for the DGP model for all redshifts when Ωm0=0.27\Omega_{m0}=0.27. Therefore, our parametrization may be robustly used to constrain the growth index of different models with the observational data which include points for redshifts ranging from 0.15 to 3.8, thus providing discriminative signatures for different models.Comment: 14 pages, 6 figures; Added reference

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Measurement of open charm production in dd+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    We present the first comprehensive measurement of D0,D+,D+D^{0}, D^{+}, D^{*+} and their charge conjugate states at mid-rapidity in dd+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV using the STAR TPC. The directly measured open charm multiplicity distribution covers a broad transverse momentum region of 0<pT<11<p_{T}<11 GeV/cc. The measured dN/dydN/dy at mid-rapidity for D0D^{0} is 0.0265±0.0036(stat.)±0.0071(syst.)0.0265\pm 0.0036 (stat.) \pm 0.0071 (syst.) and the measured D+/D0D^{*+}/D^{0} and D+/D0D^{+}/D^{0} ratios are approximately equal with a magnitude of 0.40±0.09(stat.)±0.13(syst.)0.40\pm 0.09(stat.) \pm 0.13(syst.). The total ccˉc\bar{c} cross section per nucleon-nucleon collision extracted from this study is 1.18±0.21(stat.)±0.39(syst.)1.18 \pm 0.21(stat.) \pm 0.39(syst.) mb. The direct measurement of open charm production is consistent with STAR single electron data. This cross section is higher than expectations from PYTHIA and other pQCD calculations. The measured pTp_{T} distribution is harder than the pQCD prediction using the Peterson fragmentation function.Comment: Quark Matter 2004 Proceeding

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
    corecore