252 research outputs found
Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis
© The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio
Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy
Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g. endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability threshold model for disease traits in a case-control design. The expected values based on our derived equations for both power and prediction accuracy agree well with observed estimates from simulations
Long-term associative learning predicts verbal short-term memory performance
Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting
The contribution of genetic variants to disease depends on the ruler
Our understanding of the genetic basis of disease has evolved from descriptions of overall heritability or familiality to the identification of large numbers of risk loci. One can quantify the impact of such loci on disease using a plethora of measures, which can guide future research decisions. However, different measures can attribute varying degrees of importance to a variant. In this Analysis, we consider and contrast the most commonly used measures-specifically, the heritability of disease liability, approximate heritability, sibling recurrence risk, overall genetic variance using a logarithmic relative risk scale, the area under the receiver-operating curve for risk prediction and the population attributable fraction-and give guidelines for their use that should be explicitly considered when assessing the contribution of genetic variants to disease
Using the posterior distribution of deviance to measure evidence of association for rare susceptibility variants
Aitkin recently proposed an integrated Bayesian/likelihood approach that he claims is general and simple. We have applied this method, which does not rely on informative prior probabilities or large-sample results, to investigate the evidence of association between disease and the 16 variants in the KDR gene provided by Genetic Analysis Workshop 17. Based on the likelihood of logistic regression models and considering noninformative uniform prior probabilities on the coefficients of the explanatory variables, we used a random walk Metropolis algorithm to simulate the distributions of deviance and deviance difference. The distribution of probability values and the distribution of the proportions of positive deviance differences showed different locations, but the direction of the shift depended on the genetic factor. For the variant with the highest minor allele frequency and for any rare variant, standard logistic regression showed a higher power than the novel approach. For the two variants with the strongest effects on Q1 under a type I error rate of 1%, the integrated approach showed a higher power than standard logistic regression. The advantages and limitations of the integrated Bayesian/likelihood approach should be investigated using additional regions and considering alternative regression models and collapsing methods
Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.
BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
Predictors of programme adherence and weight loss in women in an obesity programme using meal replacements
A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog
<p>Abstract</p> <p>Background</p> <p>Structural variation contributes to the rich genetic and phenotypic diversity of the modern domestic dog, <it>Canis lupus familiaris</it>, although compared to other organisms, catalogs of canine copy number variants (CNVs) are poorly defined. To this end, we developed a customized high-density tiling array across the canine genome and used it to discover CNVs in nine genetically diverse dogs and a gray wolf.</p> <p>Results</p> <p>In total, we identified 403 CNVs that overlap 401 genes, which are enriched for defense/immunity, oxidoreductase, protease, receptor, signaling molecule and transporter genes. Furthermore, we performed detailed comparisons between CNVs located within versus outside of segmental duplications (SDs) and find that CNVs in SDs are enriched for gene content and complexity. Finally, we compiled all known dog CNV regions and genotyped them with a custom aCGH chip in 61 dogs from 12 diverse breeds. These data allowed us to perform the first population genetics analysis of canine structural variation and identify CNVs that potentially contribute to breed specific traits.</p> <p>Conclusions</p> <p>Our comprehensive analysis of canine CNVs will be an important resource in genetically dissecting canine phenotypic and behavioral variation.</p
High Resolution Detection and Analysis of CpG Dinucleotides Methylation Using MBD-Seq Technology
Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution
- …
