8,109 research outputs found
Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle
Wildfires release substantial quantities of carbon (C) into the atmosphere but they also convert part of the burnt biomass into pyrogenic organic matter (PyOM). This is richer in C and, overall, more resistant to environmental degradation than the original biomass, and, therefore, PyOM production is an efficient mechanism for C sequestration. The magnitude of this C sink, however, remains poorly quantified, and current production estimates, which suggest that ∽1-5% of the C affected by fire is converted to PyOM, are based on incomplete inventories. Here, we quantify, for the first time, the complete range of PyOM components found in-situ immediately after a typical boreal forest fire. We utilized an experimental high-intensity crown fire in a jack pine forest (Pinus banksiana) and carried out a detailed pre- and postfire inventory and quantification of all fuel components, and the PyOM (i.e., all visually charred, blackened materials) produced in each of them. Our results show that, overall, 27.6% of the C affected by fire was retained in PyOM (4.8 ± 0.8 t C ha(−1)), rather than emitted to the atmosphere (12.6 ± 4.5 t C ha(−1)). The conversion rates varied substantially between fuel components. For down wood and bark, over half of the C affected was converted to PyOM, whereas for forest floor it was only one quarter, and less than a tenth for needles. If the overall conversion rate found here were applicable to boreal wildfire in general, it would translate into a PyOM production of ∽100 Tg C yr(−1) by wildfire in the global boreal regions, more than five times the amount estimated previously. Our findings suggest that PyOM production from boreal wildfires, and potentially also from other fire-prone ecosystems, may have been underestimated and that its quantitative importance as a C sink warrants its inclusion in the global C budget estimates
Serving performance in a suprapostural visual signal detection task: context-dependent and direction-specific control of body sway with fingertip light touch
Keeping gaze fixed on a target during visual smooth pursuit or touch light during fingertip contact while standing may resemble the goals of a suprapostural task with the implicit demands to minimize self-imposed sensorimotor variability. To test whether the principle of a suprapostural task generalizes to more complex sensorimotor stimulus-response mappings, we investigated how the control of body sway is influenced by an implicit feedback coupling (IFC) between the variability of touch forces at the contact point and perceptual difficulty, that is vertical jitter of a horizontally oscillating Landolt-C, in a visual signal detection task (VSDT). Mediolateral (ML) body sway of ten young healthy adults was assessed in four IFC conditions: (1) LT with independent jitter (LT-IJ), (2) LT with jitter depending on LT contact force (LT-CF), (3) LT with jitter depending on body sway (LT-BS), and (4) no contact with jitter depending on body sway (NT-BS). We assumed that the postural control system would be responsive to IFC and therefore reduce body sway in both IFC conditions. Resulting mediolateral body sway differed between the IFC conditions. Reduced sway was found in LT-CF and LT-BS compared to LT-IJ and in LT-BS compared to NT-BS. Our results demonstrate that processes controlling body sway can reduce postural variability below a variability level achieved by LT augmentation of body sway-related feedback alone. Both direct (LT-CF) and indirect (LT-BS) IFC involvement of fingertip contact minimized sway, which implies that no hierarchy existed for whole body sway or precision of fingertip contact (integration of both control processes) or that they can be reversed flexibly (one facilitating the other) if it serves the implicit goal of reduced perceptual noise and enhanced performance within the context of our suprapostural VSDT
Polynomial Interrupt Timed Automata
Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where
reachability and some variants of timed model checking are decidable even in
presence of parameters. They are well suited to model and analyze real-time
operating systems. Here we extend ITA with polynomial guards and updates,
leading to the class of polynomial ITA (PolITA). We prove the decidability of
the reachability and model checking of a timed version of CTL by an adaptation
of the cylindrical decomposition method for the first-order theory of reals.
Compared to previous approaches, our procedure handles parameters and clocks in
a unified way. Moreover, we show that PolITA are incomparable with stopwatch
automata. Finally additional features are introduced while preserving
decidability
Using item response theory to explore the psychometric properties of extended matching questions examination in undergraduate medical education
BACKGROUND:
As assessment has been shown to direct learning, it is critical that the examinations developed to test clinical competence in medical undergraduates are valid and reliable. The use of extended matching questions (EMQ) has been advocated to overcome some of the criticisms of using multiple-choice questions to test factual and applied knowledge.
METHODS:
We analysed the results from the Extended Matching Questions Examination taken by 4th year undergraduate medical students in the academic year 2001 to 2002. Rasch analysis was used to examine whether the set of questions used in the examination mapped on to a unidimensional scale, the degree of difficulty of questions within and between the various medical and surgical specialties and the pattern of responses within individual questions to assess the impact of the distractor options.
RESULTS:
Analysis of a subset of items and of the full examination demonstrated internal construct validity and the absence of bias on the majority of questions. Three main patterns of response selection were identified.
CONCLUSION:
Modern psychometric methods based upon the work of Rasch provide a useful approach to the calibration and analysis of EMQ undergraduate medical assessments. The approach allows for a formal test of the unidimensionality of the questions and thus the validity of the summed score. Given the metric calibration which follows fit to the model, it also allows for the establishment of items banks to facilitate continuity and equity in exam standards
Baryon-Baryon Interactions
After a short survey of some topics of interest in the study of baryon-baryon
scattering, the recent Nijmegen energy dependent partial wave analysis (PWA) of
the nucleon-nucleon data is reviewed. In this PWA the energy range for both pp
and np is now 0 < Tlab < 350 MeV and a chi^2_{d.o.f.}=1.08 was reached. The
implications for the pion-nucleon coupling constants are discussed. Comments
are made with respect to recent discussions around this coupling constant in
the literature. In the second part, we briefly sketch the picture of the baryon
in several, more or less QCD-based, quark-models that have been rather
prominent in the literature. Inspired by these pictures we constructed a new
soft-core model for the nucleon-nucleon interaction and present the first
results of this model in a chi^2 -fit to the new multi-energy Nijmegen PWA.
With this new model we succeeded in narrowing the gap between theory and
experiment at low energies. For the energies Tlab = 25-320 MeV we reached a
record low chi^2_{p.d.p.} = 1.16. We finish the paper with some conclusions and
an outlook describing the extension of the new model to baryon-baryon
scattering.Comment: 12 pages LaTeX and one postscript figure included. Invited talk
presented at the XIVth European Conference of Few-Body Problems in Physics,
Amsterdam, August 23-28, 199
Postural instability in an immersive Virtual Reality adapts with repetition and includes directional and gender specific effects
The ability to handle sensory conflicts and use the most appropriate sensory information is vital for successful recovery of human postural control after injury. The objective was to determine if virtual reality (VR) could provide a vehicle for sensory training, and determine the temporal and spatial nature of such adaptive changes. Twenty healthy subjects participated in the study (10 females). The subjects watched a 90-second VR simulation of railroad (rollercoaster) motion in mountainous terrain during five repeated simulations, while standing on a force platform that recorded their stability. The immediate response to watching the VR movie was an increased level of postural instability. Repeatedly watching the same VR movie significantly reduced both the anteroposterior (62%, p < 0.001) and lateral (47%, p = 0.001) energy used. However, females adapted more slowly to the VR stimuli as reflected by higher use of total (p = 0.007), low frequency (p = 0.027) and high frequency (p = 0.026) energy. Healthy subjects can significantly adapt to a multidirectional, provocative, visual environment after 4–5 repeated sessions of VR. Consequently, VR technology might be an effective tool for rehabilitation involving visual desensitisation. However, some females may require more training sessions to achieve effects with VR
Weather in stellar atmosphere: the dynamics of mercury clouds in alpha Andromedae
The formation of long-lasting structures at the surfaces of stars is commonly
ascribed to the action of strong magnetic fields. This paradigm is supported by
observations of evolving cool spots in the Sun and active late-type stars, and
stationary chemical spots in the early-type magnetic stars. However, results of
our seven-year monitoring of mercury spots in non-magnetic early-type star
alpha Andromedae show that the picture of magnetically-driven structure
formation is fundamentally incomplete. Using an indirect stellar surface
mapping technique, we construct a series of 2-D images of starspots and
discover a secular evolution of the mercury cloud cover in this star. This
remarkable structure formation process, observed for the first time in any
star, is plausibly attributed to a non-equilibrium, dynamical evolution of the
heavy-element clouds created by atomic diffusion and may have the same
underlying physics as the weather patterns on terrestrial and giant planets.Comment: 10 pages, 2 figures; to be published in Nature Physic
Possibilities for Misinterpretation in ASV-Speciation Studies of Natural Waters
Die Probleme, die bei Speciesuntersuchungen von Spurenelementen mit Hilfe der Differentialpuls Anodic Stripping Voltammetrie auftreten, werden zu-sammenfassend dargestellt. Neben den bei der eigentlichen Bestimmung auftretenden Problemen, werden auch solche erwähnt, die mit der Probennahme sowie der Lagerung und Vorbehandlung der Proben in Zusammenhang stehen
Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands
"© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
Isotropy of the velocity of light and the Sagnac effect
In this paper, it is shown, using a geometrical approach, the isotropy of the
velocity of light measured in a rotating frame in Minkowski space-time, and it
is verified that this result is compatible with the Sagnac effect. Furthermore,
we find that this problem can be reduced to the solution of geodesic triangles
in a Minkowskian cylinder. A relationship between the problems established on
the cylinder and on the Minkowskian plane is obtained through a local isometry.Comment: LaTeX, 13 pages, 3 eps figures; typos corrected, added references,
minor changes; to appear in "Relativity in Rotating Frames", ed. G. Rizzi G.
and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht (2003
- …
