2,174 research outputs found

    Brain oscillations differentially encode noxious stimulus intensity and pain intensity

    Get PDF
    Noxious stimuli induce physiological processes which commonly translate into pain. However, under certain conditions, pain intensity can substantially dissociate from stimulus intensity, e.g. during longer-lasting pain in chronic pain syndromes. How stimulus intensity and pain intensity are differentially represented in the human brain is, however, not yet fully understood. We therefore used electroencephalography (EEG) to investigate the cerebral representation of noxious stimulus intensity and pain intensity during 10 min of painful heat stimulation in 39 healthy human participants. Time courses of objective stimulus intensity and subjective pain ratings indicated a dissociation of both measures. EEG data showed that stimulus intensity was encoded by decreases of neuronal oscillations at alpha and beta frequencies in sensorimotor areas. In contrast, pain intensity was encoded by gamma oscillations in the medial prefrontal cortex. Contrasting right versus left hand stimulation revealed that the encoding of stimulus intensity in contralateral sensorimotor areas depended on the stimulation side. In contrast, a conjunction analysis of right and left hand stimulation revealed that the encoding of pain in the medial prefrontal cortex was independent of the side of stimulation. Thus, the translation of noxious stimulus intensity into pain is associated with a change from a spatially specific representation of stimulus intensity by alpha and beta oscillations in sensorimotor areas to a spatially independent representation of pain by gamma oscillations in brain areas related to cognitive and affective-motivational processes. These findings extend the understanding of the brain mechanisms of nociception and pain and their dissociations during longer-lasting pain as a key symptom of chronic pain syndromes

    Tuning of gallery heights in a crystalline 2D carbon nitride network

    Get PDF
    Poly(triazine imide) - a 2D layered network - can be obtained as an intercalation compound with halides from the ionothermal condensation of dicyandiamide in a eutectic salt melt. The gallery height of the intercalated material can be tuned via the composition of the eutectic melt and by post-synthetic modification. Here, we report the synthesis of poly(triazine imide) with intercalated bromide ions (PTI/Br) from a lithium bromide and potassium bromide salt melt. PTI/Br has a hexagonal unit-cell (P63cm (no. 185); a = 8.500390(68) Å, c = 7.04483(17) Å) that contains two layers of imide-bridged triazine (C3N3) units stacked in an AB-fashion as corroborated by solid-state NMR, FTIR spectroscopy and high-resolution TEM. By comparison with a recently reported material PTI/Li +Cl-, prepared from a LiCl/KCl eutectic, the layer-stacking distance in the analogous bromide material was expanded from 3.38 Å to 3.52 Å-an exceptionally large spacing for an aromatic, discotic system (cf. graphite 3.35 Å). Subsequent treatment of PTI/Br with concentrated ammonium fluoride yields poly(triazine imide) with intercalated fluoride ions (PTI/F) (P63/m (no. 176); a = 8.4212(4) Å, c = 6.6381(5) Å) as a statistical phase mix with PTI/Br. Fluoride intercalation leads to a contraction of the gallery height to 3.32 Å, demonstrating that the gallery height is synthetically tuneable in these materials. © The Royal Society of Chemistry 2013

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey

    Get PDF
    A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3 %) were 65 years or older, the median age was 76 years (range: 9–97 years), and the male to female ratio 2.2. Among these patients, 73 % had health care-associated and 20 % community-acquired C. difficile infection (indeterminable 7 %). The all-cause, 30-day mortality was 8.8 % (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20 %), 014 (15.8 %), 053 (10.5 %), 078 (5.3 %), and 002 (4.7 %) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95 % CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones

    The role of magnetic anisotropy in the Kondo effect

    Get PDF
    In the Kondo effect, a localized magnetic moment is screened by forming a correlated electron system with the surrounding conduction electrons of a non-magnetic host. Spin S=1/2 Kondo systems have been investigated extensively in theory and experiments, but magnetic atoms often have a larger spin. Larger spins are subject to the influence of magnetocrystalline anisotropy, which describes the dependence of the magnetic moment's energy on the orientation of the spin relative to its surrounding atomic environment. Here we demonstrate the decisive role of magnetic anisotropy in the physics of Kondo screening. A scanning tunnelling microscope is used to simultaneously determine the magnitude of the spin, the magnetic anisotropy and the Kondo properties of individual magnetic atoms on a surface. We find that a Kondo resonance emerges for large-spin atoms only when the magnetic anisotropy creates degenerate ground-state levels that are connected by the spin flip of a screening electron. The magnetic anisotropy also determines how the Kondo resonance evolves in a magnetic field: the resonance peak splits at rates that are strongly direction dependent. These rates are well described by the energies of the underlying unscreened spin states.Comment: 14 pages, 4 figures, published in Nature Physic

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue

    Get PDF
    Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo

    Stroke risk perception among participants of a stroke awareness campaign

    Get PDF
    Abstract Background Subjective risk factor perception is an important component of the motivation to change unhealthy life styles. While prior studies assessed cardiovascular risk factor knowledge, little is known about determinants of the individual perception of stroke risk. Methods Survey by mailed questionnaire among 1483 participants of a prior public stroke campaign in Germany. Participants had been informed about their individual stroke risk based on the Framingham stroke risk score. Stroke risk factor knowledge, perception of lifetime stroke risk and risk factor status were included in the questionnaire, and the determinants of good risk factor knowledge and high stroke risk perception were identified using logistic regression models. Results Overall stroke risk factor knowledge was good with 67–96% of the participants recognizing established risk factors. The two exceptions were diabetes (recognized by 49%) and myocardial infarction (57%). Knowledge of a specific factor was superior among those affected by it. 13% of all participants considered themselves of having a high stroke risk, 55% indicated a moderate risk. All major risk factors contributed significantly to the perception of being at high stroke risk, but the effects of age, sex and education were non-significant. Poor self-rated health was additionally associated with high individual stroke risk perception. Conclusion Stroke risk factor knowledge was high in this study. The self perception of an increased stroke risk was associated with established risk factors as well as low perception of general health.</p

    Search for third-generation scalar leptoquarks in the tτ channel in proton-proton collisions at √s = 8 TeV

    Get PDF
    A search for pair production of third-generation scalar leptoquarks decaying to top quark and τ lepton pairs is presented using proton-proton collision data at a center-of-mass energy of √s = 8 TeV collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 fb[superscript −1]. The search is performed using events that contain an electron or a muon, a hadronically decaying τ lepton, and two or more jets. The observations are found to be consistent with the standard model predictions. Assuming that all leptoquarks decay to a top quark and a τ lepton, the existence of pair produced, charge −1/3, third-generation leptoquarks up to a mass of 685 GeV is excluded at 95% confidence level. This result constitutes the first direct limit for leptoquarks decaying into a top quark and a τ lepton, and may also be applied directly to the pair production of bottom squarks decaying predominantly via the R-parity violating coupling λ [subscript 333] ′.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimization of facade design based on the impact of interior obstructions to daylighting

    Get PDF
    Overcrowding in the perimeter zone is an inevitable issue in residential rooms with limited space. Obstructions, such as furniture and household items, may block the existing windows, and therefore affect interior daylight conditions. A facade design approach is needed that simultaneously takes into account daylighting and the volume of usable space for obstructions in the perimeter zone of such rooms. This study simulates daylight distributions in a typical small residential room with obstructions in front of windows. The simulation consists of two parts. First, the effects on horizontal illuminances caused by different positions and shapes of obstructions are examined under an overcast sky. Second, the maximum usable space volumes for obstructions of 51 optimized facade configurations are calculated in terms of four window-to-wall ratios (WWRs). The results of this study show that optimizing the forms of facade design can increase the usable interior space volume and meet the daylighting requirements of Chinese standards for small residential rooms. Additionally, by using the optimized facade forms, a facade with a WWR value of 50% provides the maximum usable space for obstructions. Based on the above results, this paper presents two matrices that can help architects in selecting the appropriate fenestration methods and confirming the size of usable space and allocation for residents
    corecore