40 research outputs found

    The ghost of hosts past: impacts of host extinction on parasite specificity

    Get PDF
    A growing body of research is focused on the extinction of parasite species in response to host endangerment and declines. Beyond the loss of parasite species richness, host extinction can impact apparent parasite host specificity, as measured by host richness or the phylogenetic distances among hosts. Such impacts on the distribution of parasites across the host phylogeny can have knock-on effects that may reshape the adaptation of both hosts and parasites, ultimately shifting the evolutionary landscape underlying the potential for emergence and the evolution of virulence across hosts. Here, we examine how the reshaping of host phylogenies through extinction may impact the host specificity of parasites, and offer examples from historical extinctions, present-day endangerment, and future projections of biodiversity loss. We suggest that an improved understanding of the impact of host extinction on contemporary host–parasite interactions may shed light on core aspects of disease ecology, including comparative studies of host specificity, virulence evolution in multi-host parasite systems, and future trajectories for host and parasite biodiversity. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’

    Data proliferation, reconciliation, and synthesis in viral ecology

    Get PDF
    The fields of viral ecology and evolution have rapidly expanded in the last two decades, driven by technological improvements, and motivated by efforts to discover potentially zoonotic wildlife viruses under the rubric of pandemic prevention. One consequence has been a massive proliferation of host-virus association data, which comprise the backbone of research in viral macroecology and zoonotic risk prediction. These data remain fragmented across numerous data portals and projects, each with their own scope, structure, and reporting standards. Here, we propose that synthesis of host-virus association data is a central challenge to improve our understanding of the global virome and develop foundational theory in viral ecology. To illustrate this, we build an open reconciled mammal-virus database from four key published datasets, applying a standardized taxonomy and metadata. We show that reconciling these datasets provides a substantially richer view of the mammal virome than that offered by any one individual database. We argue for a shift in best practice towards the incremental development and use of synthetic datasets in viral ecology research, both to improve comparability and replicability across studies, and to facilitate future efforts to use machine learning to predict the structure and dynamics of the global virome

    The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts

    Get PDF
    © 2016 John Wiley & Sons Ltd/CNRS. Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence

    The future of zoonotic risk prediction

    Get PDF
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.Peer reviewe

    The future of zoonotic risk prediction

    Get PDF
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.NSF BII 2021909; the University of Toronto EEB Fellowship; the Wellcome Trust; the National Institute of Allergy and Infectious Diseases of the National Institutes of Health and the Defense Threat Reduction Agency.http://rstb.royalsocietypublishing.orgam2022Medical Virolog

    Predicting abundance–body size relationships in functional and taxonomic subsets of food webs

    No full text
    Abundance-body size relationships are widely observed macroecological patterns in complete food webs and in taxonomically or functionally defined subsets of those webs. Observed abundance-body size relationships have frequently been compared with predictions based on the energetic equivalence hypothesis and, more recently, with predictions based on energy availability to different body size classes. Here, we consider the ways in which working with taxonomically or functionally defined subsets of food webs affected the relationship between the predicted and observed scaling of biomass and body mass in sediment dwelling benthic invertebrate communities at three sites in the North Sea. At each site, the energy available to body size classes in the "whole" community (community defined as all animals of 0.03125-32.0 g shell-free wet weight) and in three subsets was predicted from estimates of trophic level based on nitrogen stable isotope analysis. The observed and predicted scalings of biomass and body size were not significantly different for the whole community, and reflected an increase in energy availability with body size. However, the results for subsets showed that energy availability could increase or decrease with body size, and that individuals in the subsets were likely to be competing with individuals outside the subsets for energy. We conclude that the study of abundance-body mass relationships in functionally or taxonomically defined subsets of food webs is unlikely to provide an adequate test of the energetic equivalence hypothesis or other relationships between energy availability and scaling. To consistently and reliably interpret the results of these tests, it is necessary to know about energy availability as a function of body size both within and outside the subset considered

    POTENTIAL FOR CONTROLLING THE SPREAD OF CENTAUREA MACULOSA WITH GRASS COMPETITION

    No full text
    Volume: 56Start Page: 267End Page: 27

    Biochemical and genetic controls exerted by plant mitochondria

    Get PDF
    AbstractHigher plant mitochondria contain two terminal oxidases, cytochrome c oxidase and a cyanide-resitant ‘alternative’ oxidase. Electron flux through these two respiratory pathways is controlled by environmental conditions, stimuli received by mitochondria. In general, stresses such as cold, wounding, pathogen attack and others favor electron flow through the alternative oxidase. One of the proposed functions of the alternative pathway is to relieve the tricarboxylic acid (TCA) cycle of inhibition from cytochrome pathway products and allow the cycle to furnish carbon skeletons for anabolic requirements. We are currently investigating, with an NADP-linked isocitrate dehydrogenase in plant mitochondria, a possible link between respiratory control and carbon flux from the TCA cycle. Regulation of the nuclear gene encoding the alternative oxidase, Aox1, is also being employed as a model for perception of the many stresses by the mitochondria and transfer of these signals to the nucleus. Our initial results indicate that hydrogen peroxide is an intermediate in this signalling process
    corecore