1,194 research outputs found
Assessing neural network scene classification from degraded images
Scene recognition is an essential component of both machine and biological vision. Recent advances in computer vision using deep convolutional neural networks (CNNs) have demonstrated impressive sophistication in scene recognition, through training on large datasets of labeled scene images (Zhou et al. 2018, 2014). One criticism of CNN-based approaches is that performance may not generalize well beyond the training image set (Torralba and Efros 2011), and may be hampered by minor image modifications, which in some cases are barely perceptible to the human eye (Goodfellow et al. 2015; Szegedy et al. 2013). While these “adversarial examples” may be unlikely in natural contexts, during many real-world visual tasks scene information can be degraded or limited due to defocus blur, camera motion, sensor noise, or occluding objects. Here, we quantify the impact of several image degradations (some common, and some more exotic) on indoor/outdoor scene classification using CNNs. For comparison, we use human observers as a benchmark, and also evaluate performance against classifiers using limited, manually selected descriptors. While the CNNs outperformed the other classifiers and rivaled human accuracy for intact images, our results show that their classification accuracy is more affected by image degradations than human observers. On a practical level, however, accuracy of the CNNs remained well above chance for a wide range of image manipulations that disrupted both local and global image statistics. We also examine the level of image-by-image agreement with human observers, and find that the CNNs' agreement with observers varied as a function of the nature of image manipulation. In many cases, this agreement was not substantially different from the level one would expect to observe for two independent classifiers. Together, these results suggest that CNN-based scene classification techniques are relatively robust to several image degradations. However, the pattern of classifications obtained for ambiguous images does not appear to closely reflect the strategies employed by human observers
Is the Lambda CDM Model Consistent with Observations of Large-Scale Structure?
The claim that large-scale structure data independently prefers the Lambda
Cold Dark Matter model is a myth. However, an updated compilation of
large-scale structure observations cannot rule out Lambda CDM at 95%
confidence. We explore the possibility of improving the model by adding Hot
Dark Matter but the fit becomes worse; this allows us to set limits on the
neutrino mass.Comment: To appear in Proceedings of "Sources and Detection of Dark
Matter/Energy in the Universe", ed. D. B. Cline. 6 pages, including 2 color
figure
Power Spectrum of Velocity Fluctuations in the Universe
We investigate the power spectrum of velocity fluctuations in the universe,
, starting from four different measures of velocity: (1) the power
spectrum of velocity fluctuations from peculiar velocities of galaxies; (2) the
rms peculiar velocity of galaxy clusters; (3) the power spectrum of velocity
fluctuations from the power spectrum of density fluctuations in the galaxy
distribution; (4) and the bulk velocity from peculiar velocities of galaxies.
We show that measures (1) and (2) are not consistent with each other and either
the power spectrum from peculiar velocities of galaxies is overestimated or the
rms cluster peculiar velocity is underestimated. The amplitude of velocity
fluctuations derived from the galaxy distribution (measure 3) depends on the
parameter . We estimate the parameter on the basis of measures
(2) and (4). The power spectrum of velocity fluctuations from the galaxy
distribution in the Stromlo-APM redshift survey is consistent with the observed
rms cluster velocity and with the observed large-scale bulk flow when the
parameter is in the range 0.4-0.5. In this case the value of the
function at wavelength Mpc is km s
and the rms amplitude of the bulk flow at the radius Mpc is km s. The velocity dispersion of galaxy systems originates mostly
from the large-scale velocity fluctuations with wavelengths Mpc.Comment: Astrophysical Journal, Vol. 493, in press: 23 pages, uses AAS Latex,
and 14 separate postscript figure
CIRCULAR DICHROISM OF LIGHT-HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA
The CD spectra of a range of antenna complexes from several different species of purple photosynthetic bacteria were recorded in the wavelength range of 190 to 930 nm. Analysis of the far UV CD (190 to 250 nm) showed that in each case except for the B800-850 from Chr. vinosum the secondary structure of the light-harvesting complexes contains a large amount of α-helix (50%) and very little 0-pleated sheet. This confirms the predictions of the group of Zuber of a high a-helical content based upon consideration of the primary structures of several antenna apoproteins. The CD spectra from the carotenoids and the bacteriochlorophylls show considerable variations depending upon the type of antenna complex. The different amplitude ratios in the CD spectrum for the bacteriochlorophyll Qy, Qx and Soret bands indicate not only different degrees of exciton coupling, but also a strong and variable hyperchromism (Scherz and Parson, 1984a, b)
Double Inflation in Supergravity and the Large Scale Structure
The cosmological implication of a double inflation model with hybrid + new
inflations in supergravity is studied. The hybrid inflation drives an inflaton
for new inflation close to the origin through supergravity effects and new
inflation naturally occurs. If the total e-fold number of new inflation is
smaller than , both inflations produce cosmologically relevant density
fluctuations. Both cluster abundances and galaxy distributions provide strong
constraints on the parameters in the double inflation model assuming
standard cold dark matter scenario. The future satellite
experiments to measure the angular power spectrum of the cosmic microwave
background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file
Breast MRI and tumour biology predict axillary lymph node response to neoadjuvant chemotherapy for breast cancer
Background: In patients who have had axillary nodal metastasis diagnosed prior to neoadjuvant chemotherapy for breast cancer, there is little consensus on how to manage the axilla subsequently. The aim of this study was to explore whether a combination of breast magnetic resonance imaging (MRI) assessed response and primary tumour pathology factors could identify a subset of patients that might be spared axillary node clearance.Methods: A retrospective data analysis was performed of patients with core biopsy-proven axillary nodal metastasis prior to commencement of neoadjuvant chemotherapy (NAC) who had subsequent axillary node clearance (ANC) at definitive breast surgery. Breast tumour and axillary response at MRI before, during and on completion of NAC, core biopsy tumour grade, tumour type and immunophenotype were correlated with pathological response in the breast and the number of metastatic nodes in the ANC specimens.Results: Of 87 consecutive patients with MRI at baseline, interim and after neoadjuvant chemotherapy who underwent ANC at time of breast surgery, 33 (38%) had no residual macrometastatic axillary disease, 28 (32%) had 1–2 metastatic nodes and 26 (30%) had more than 2 metastatic nodes. Factors that predicted axillary nodal complete response were MRI complete response in the breast (p < 0.0001), HER2 positivity (p = 0.02) and non-lobular tumour type (p = 0.015).Conclusion: MRI assessment of breast tumour response to NAC and core biopsy factors are predictive of response in axillary nodes, and can be used to guide decision making regarding appropriate axillary surgery
Origin and evolution of halo bias in linear and non-linear regimes
We present results from a study of bias and its evolution for galaxy-size
halos in a large, high-resolution simulation of a LCDM model. We consider the
evolution of bias estimated using two-point correlation function (b_xi), power
spectrum (b_P), and a direct correlation of smoothed halo and matter
overdensity fields (b_d). We present accurate estimates of the evolution of the
matter power spectrum probed deep into the stable clustering regime
(k~[0.1-200]h/Mpc at z=0). The halo power spectrum evolves much slower than the
power spectrum of matter and has a different shape which indicates that the
bias is time- and scale-dependent. At z=0, the halo power spectrum is
anti-biased with respect to the matter power spectrum at wavenumbers
k~[0.15-30]h/Mpc, and provides an excellent match to the power spectrum of the
APM galaxies at all probed k. In particular, it nicely matches the inflection
observed in the APM power spectrum at k~0.15h/Mpc. We complement the power
spectrum analysis with a direct estimate of bias using smoothed halo and matter
overdensity fields and show that the evolution observed in the simulation in
linear and mildly non-linear regimes can be well described by the analytical
model of Mo & White (1996), if the distinction between formation redshift of
halos and observation epoch is introduced into the model. We present arguments
and evidence that at higher overdensities, the evolution of bias is
significantly affected by dynamical friction and tidal stripping operating on
the satellite halos in high-density regions of clusters and groups; we
attribute the strong anti-bias observed in the halo correlation function and
power spectrum to these effects. (Abridged)Comment: submitted to the Astrophys.Journal; 19 pages, 9 figures LaTeX (uses
emulateapj.sty
Commercial Application of In-Space Assembly
In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection with linear load deflection response. The paper will discuss the business case for ISA, the general approach taken to exploit on-orbit assembly in the GEO communication satellite market, and the concept of operations associated with the ISA approach, thus laying the foundation for ISA to become an accepted operational approach for commercial in-space operations
Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest
International audienceBiogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2?3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5?3 nm particles during these formation events were 2.89/2.68 nmh?1, respectively; for 3-7 nm particles 4.26/4.03, and for 7?20 nm particles 8.90/7.58 nmh?1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34?1.8 nm) were 2400/1700 cm?3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba
Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements. Application to the Casimir force in the 20-100 nm range
Using a template-stripping method, macroscopic gold surfaces with
root-mean-square (rms) roughness less than 0.4 nm have been prepared, making
them useful for studies of surface interactions in the nanometer range. The
utility of such substrates is demonstrated by measurements of the Casimir force
at surface separations between 20 and 100 nm, resulting in good agreement with
theory. The significance and quantification of this agreement is addressed, as
well as some methodological aspects regarding the measurement of the Casimir
force with high accuracy.Comment: 7 figure
- …
