3,278 research outputs found
A Framework for Approval-based Budgeting Methods
We define and study a general framework for approval-based budgeting methods
and compare certain methods within this framework by their axiomatic and
computational properties. Furthermore, we visualize their behavior on certain
Euclidean distributions and analyze them experimentally
Diffusion Maps Kalman Filter for a Class of Systems with Gradient Flows
In this paper, we propose a non-parametric method for state estimation of
high-dimensional nonlinear stochastic dynamical systems, which evolve according
to gradient flows with isotropic diffusion. We combine diffusion maps, a
manifold learning technique, with a linear Kalman filter and with concepts from
Koopman operator theory. More concretely, using diffusion maps, we construct
data-driven virtual state coordinates, which linearize the system model. Based
on these coordinates, we devise a data-driven framework for state estimation
using the Kalman filter. We demonstrate the strengths of our method with
respect to both parametric and non-parametric algorithms in three tracking
problems. In particular, applying the approach to actual recordings of
hippocampal neural activity in rodents directly yields a representation of the
position of the animals. We show that the proposed method outperforms competing
non-parametric algorithms in the examined stochastic problem formulations.
Additionally, we obtain results comparable to classical parametric algorithms,
which, in contrast to our method, are equipped with model knowledge.Comment: 15 pages, 12 figures, submitted to IEEE TS
- …
