80 research outputs found
Current challenges and possible solutions to improve access to care and treatment for hepatitis C infection in Vietnam: a systematic review
BACKGROUND: Hepatitis C infection is a major public health concern in low- and middle-income countries where an estimated 71.1 million individuals are living with chronic infection. The World Health Organization (WHO) has recently released new guidance for hepatitis C virus (HCV) treatment programs, which include improving the access to new direct-acting antiviral agents. In Vietnam, a highly populated middle-income country, the seroprevalence of HCV infection is approximately 4% and multiple genotypes co-circulate in the general population. Here we review what is currently known regarding the epidemiology of HCV in Vietnam and outline options for reducing the significant burden of morbidity and mortality in our setting. METHODS: We performed a systematic review of the currently available literature to evaluate what has been achieved to date with efforts to control HCV infection in Vietnam. RESULTS: This search retrieved few publications specific to Vietnam indicating a significant gap in baseline epidemiological and public health data. Key knowledge gaps identified included an understanding of the prevalence in specific high-risk groups, characterization of circulating HCV genotypes in the population and likely response to treatment, and the extent to which HCV treatment is available, accessed and utilized. CONCLUSIONS: We conclude that there is an urgent need to perform up to date assessments of HCV disease burden in Vietnam, especially in high-risk groups, in whom incidence is high and cross infection with multiple genotypes is likely to be frequent. Coordinating renewed surveillance measures with forthcoming HCV treatment studies should initiate the traction required to achieve the WHO goal of eliminating HCV as a public health threat by 2030, at least in this region
Salmonella Typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans
Background: Typhoid fever, caused by the human-restricted organism Salmonella Typhi (S. Typhi), is a major public health problem worldwide. Development of novel vaccines remains imperative, but is hampered by an incomplete understanding of the immune responses that correlate with protection. Methods: Recently, a controlled human infection model was re-established in which volunteers received ~103 cfu wild-type S. Typhi (Quailes strain) orally. Twenty-one volunteers were evaluated for their cell-mediated immune (CMI) responses. Ex vivo PBMC isolated before and up to 1 year after challenge were exposed to three S. Typhi-infected targets, i.e., autologous B lymphoblastoid cell-lines (B-LCL), autologous blasts and HLA-E restricted AEH B-LCL cells. CMI responses were evaluated using 14-color multiparametric flow cytometry to detect simultaneously five intracellular cytokines/chemokines (i.e., IL-17A, IL-2, IFN-g, TNF-a and MIP-1b) and a marker of degranulation/cytotoxic activity (CD107a). Results: Herein we provide the first evidence that S. Typhi-specific CD8+ responses correlate with clinical outcome in humans challenged with wild-type S. Typhi. Higher multifunctional S. Typhi-specific CD8+ baseline responses were associated with protection against typhoid and delayed disease onset. Moreover, following challenge, development of typhoid fever was accompanied by decreases in circulating S. Typhi-specific CD8+ T effector/memory (TEM) with gut homing potential, suggesting migration to the site(s) of infection. In contrast, protection against disease was associated with low or no changes in circulating S. Typhi-specific TEM. Conclusions: These studies provide novel insights into the protective immune responses against typhoid disease that will aid in selection and development of new vaccine candidates
Clinical features, antimicrobial susceptibility patterns and genomics of bacteria causing neonatal sepsis in a children's hospital in Vietnam: protocol for a prospective observational study.
INTRODUCTION: The clinical syndrome of neonatal sepsis, comprising signs of infection, septic shock and organ dysfunction in infants ≤4 weeks of age, is a frequent sequel to bloodstream infection and mandates urgent antimicrobial therapy. Bacterial characterisation and antimicrobial susceptibility testing is vital for ensuring appropriate therapy, as high rates of antimicrobial resistance (AMR), especially in low-income and middle-income countries, may adversely affect outcome. Ho Chi Minh City (HCMC) in Vietnam is a rapidly expanding city in Southeast Asia with a current population of almost 8 million. There are limited contemporary data on the causes of neonatal sepsis in Vietnam, and we hypothesise that the emergence of multidrug resistant bacteria is an increasing problem for the appropriate management of sepsis cases. In this study, we aim to investigate the major causes of neonatal sepsis and assess disease outcomes by clinical features, antimicrobial susceptibility profiles and genome composition. METHOD AND ANALYSIS: We will conduct a prospective observational study to characterise the clinical and microbiological features of neonatal sepsis in a major children's hospital in HCMC. All bacteria isolated from blood subjected to whole genome sequencing. We will compare clinical variables and outcomes between different bacterial species, genome composition and AMR gene content. AMR gene content will be assessed and stratified by species, years and contributing hospital departments. Genome sequences will be analysed to investigate phylogenetic relationships. ETHICS AND DISSEMINATION: The study will be conducted in accordance with the principles of the Declaration of Helsinki and the International Council on Harmonization Guidelines for Good Clinical Practice. Ethics approval has been provided by the Oxford Tropical Research Ethics Committee 35-16 and Vietnam Children's Hospital 1 Ethics Committee 73/GCN/BVND1. The findings will be disseminated at international conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER: ISRCTN69124914; Pre-results
Changing antimicrobial resistance trends in Kathmandu, Nepal: A 23-year retrospective analysis of bacteraemia
A comprehensive longitudinal understanding of the changing epidemiology of the agents causing bacteraemia and their AMR profiles in key locations is crucial for assessing the progression and magnitude of the global AMR crisis. We performed a retrospective analysis of routine microbiological data from April 1992 to December 2014, studying the time trends of non-Salmonella associated bacteraemia at a single Kathmandu healthcare facility. The distribution of aetiological agents, their antimicrobial susceptibility profiles, and the hospital ward of isolation were assessed. Two hundred twenty-four thousand seven hundred forty-one blood cultures were performed over the study period, of which, 30,353 (13.5%) exhibited growth for non-contaminant bacteria. We observed a significant increasing trend in the proportion of MDR non-Salmonella Enterobacteriaceae (p < 0.001), other Gram-negative organisms (p = 0.006), and Gram-positive organisms (p = 0.006) over time. Additionally, there was an annual increasing trend in the proportion of MDR organisms in bacteria-positive blood cultures originating from patients attending the emergency ward (p = 0.006) and the outpatient department (p = 0.006). This unique dataset demonstrates that community acquired non-Salmonella bacteraemia has become an increasingly important cause of hospital admission in Kathmandu. An increasing burden of bacteraemia associated with MDR organisms in the community underscores the need for preventing the circulation of MDR bacteria within the local population
Diagnostic host gene signature to accurately distinguish enteric fever from other febrile diseases
Misdiagnosis of enteric fever is a major global health problem resulting in patient mismanagement, antimicrobial misuse and inaccurate disease burden estimates. Applying a machine-learning algorithm to host gene expression profiles, we identified a diagnostic signature which could accurately distinguish culture-confirmed enteric fever cases from other febrile illnesses (AUROC<95%). Applying this signature to a culture-negative suspected enteric fever cohort in Nepal identified a further 12.6% as likely true cases. Our analysis highlights the power of data-driven approaches to identify host-response patterns for the diagnosis of febrile illnesses. Expression signatures were validated using qPCR highlighting their utility as PCR-based diagnostic for use in endemic settings
Burden of enteric fever at three urban sites in Africa and Asia: a multicentre population-based study
Summary
Background
Enteric fever is a serious public health concern in many low-income and middle-income countries. Numerous data gaps exist concerning the epidemiology of Salmonella enterica serotype Typhi (S Typhi) and Salmonella enterica serotype Paratyphi (S Paratyphi), which are the causative agents of enteric fever. We aimed to determine the burden of enteric fever in three urban sites in Africa and Asia.
Methods
In this multicentre population-based study, we did a demographic census at three urban sites in Africa (Blantyre, Malawi) and Asia (Kathmandu, Nepal and Dhaka, Bangladesh) between June 1, 2016, and Sept 25, 2018. Households were selected randomly from the demographic census. Participants from within the geographical census area presenting to study health-care facilities were approached for recruitment if they had a history of fever for 72 h or more (later changed to >48 h) or temperature of 38·0°C or higher. Facility-based passive surveillance was done between Nov 11, 2016, and Dec 31, 2018, with blood-culture collection for febrile illness. We also did a community-based serological survey to obtain data on Vi-antibody defined infections. We calculated crude incidence for blood-culture-confirmed S Typhi and S Paratyphi infection, and calculated adjusted incidence and seroincidence of S Typhi blood-culture-confirmed infection.
Findings
423 618 individuals were included in the demographic census, contributing 626 219 person-years of observation for febrile illness surveillance. 624 S Typhi and 108 S Paratyphi A isolates were collected from the blood of 12 082 febrile patients. Multidrug resistance was observed in 44% S Typhi isolates and fluoroquinolone resistance in 61% of S Typhi isolates. In Blantyre, the overall crude incidence of blood-culture confirmed S Typhi was 58 cases per 100 000 person-years of observation (95% CI 48–70); the adjusted incidence was 444 cases per 100 000 person-years of observation (95% credible interval [CrI] 347–717). The corresponding rates were 74 (95% CI 62–87) and 1062 (95% CrI 683–1839) in Kathmandu, and 161 (95% CI 145–179) and 1135 (95% CrI 898–1480) in Dhaka. S Paratyphi was not found in Blantyre; overall crude incidence of blood-culture-confirmed S Paratyphi A infection was 6 cases per 100 000 person-years of observation (95% CI 3–11) in Kathmandu and 42 (95% CI 34–52) in Dhaka. Seroconversion rates for S Typhi infection per 100 000 person-years estimated from anti-Vi seroconversion episodes in serological surveillance were 2505 episodes (95% CI 1605–3727) in Blantyre, 7631 (95% CI 5913–9691) in Kathmandu, and 3256 (95% CI 2432–4270) in Dhaka.
Interpretation
High disease incidence and rates of antimicrobial resistance were observed across three different transmission settings and thus necessitate multiple intervention strategies to achieve global control of these pathogens.
Funding
Wellcome Trust and the Bill & Melinda Gates Foundation
Assessment of an antibody-in-lymphocyte supernatant assay for the etiological diagnosis of pneumococcal pneumonia in children
New diagnostic tests for the etiology of childhood pneumonia are needed. We evaluated the antibody-in-lymphocyte supernatant (ALS) assay to detect immunoglobulin (Ig) G secretion from ex vivo peripheral blood mononuclear cell (PBMC) culture, as a potential diagnostic test for pneumococcal pneumonia. We enrolled 348 children with pneumonia admitted to Patan Hospital, Kathmandu, Nepal between December 2015 and September 2016. PBMCs sampled from participants were incubated for 48 h before harvesting of cell culture supernatant (ALS). We used a fluorescence-based multiplexed immunoassay to measure the concentration of IgG in ALS against five conserved pneumococcal protein antigens. Of children with pneumonia, 68 had a confirmed etiological diagnosis: 12 children had pneumococcal pneumonia (defined as blood or pleural fluid culture-confirmed; or plasma CRP concentration ≥60 mg/l and nasopharyngeal carriage of serotype 1 pneumococci), and 56 children had non-pneumococcal pneumonia. Children with non-pneumococcal pneumonia had either a bacterial pathogen isolated from blood (six children); or C-reactive protein <60 mg/l, absence of radiographic consolidation and detection of a pathogenic virus by multiplex PCR (respiratory syncytial virus, influenza viruses, or parainfluenza viruses; 23 children). Concentrations of ALS IgG to all five pneumococcal proteins were significantly higher in children with pneumococcal pneumonia than in children with non-pneumococcal pneumonia. The concentration of IgG in ALS to the best-performing antigen discriminated between children with pneumococcal and non-pneumococcal pneumonia with a sensitivity of 1.0 (95% CI 0.73–1.0), specificity of 0.66 (95% CI 0.52–0.78) and area under the receiver-operating characteristic curve (AUROCC) 0.85 (95% CI 0.75–0.94). Children with pneumococcal pneumonia were older than children with non-pneumococcal pneumonia (median 5.6 and 2.0 years, respectively, p < 0.001). When the analysis was limited to children ≥2 years of age, assay of IgG ALS to pneumococcal proteins was unable to discriminate between children with pneumococcal pneumonia and non-pneumococcal pneumonia (AUROCC 0.67, 95% CI 0.47–0.88). This method detected spontaneous secretion of IgG to pneumococcal protein antigens from cultured PBMCs. However, when stratified by age group, assay of IgG in ALS to pneumococcal proteins showed limited utility as a test to discriminate between pneumococcal and non-pneumococcal pneumonia in children
An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever
OBJECTIVES: The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. METHODS: IgM against 12 purified antigens and the Vi polysaccharide was measured by ELISA in plasma from patients with confirmed typhoid fever (n=32), other confirmed infections (n=17), and healthy controls (n=40). ELISAs with the most specific antigens were performed on plasma from 243 patients with undiagnosed febrile disease. RESULTS: IgM against the S. Typhi protein antigens correlated with each other (rho>0.8), but not against Vi (rho0.85, respectively. Applying a dynamic cut-off to patients with undiagnosed febrile disease suggested that 34-58% had an IgM response indicative of typhoid. CONCLUSIONS: We evaluated the diagnostic potential of several S. Typhi antigens; our assays give good sensitivity and specificity, but require further assessment in differing patient populations
Correlation of Group C Meningococcal Conjugate Vaccine Response with B- and T-Lymphocyte Activity
Despite the success of conjugate vaccination against meningococcal group C (MenC) disease, post-vaccination, some individuals still exhibit rapid waning of initially protective bactericidal antibody levels. The mechanism of this relative loss of humoral protection remains undetermined. In this report we have investigated the relationship between T- and B-cell activation and co-stimulation and the loss of protective antibody titers. We have found that healthy volunteers who lose protective MenC antibody levels one year after receipt of glycoconjugate vaccine exhibit no detectable cellular defect in polyclonal B- or T-cell activation, proliferation or the B-memory pool. This suggests that the processes underlying the more rapid loss of antibody levels are independent of defects in either initial T- or B-cell activation
Direct inference and control of genetic population structure from RNA sequencing data
RNAseq data can be used to infer genetic variants, yet its use for estimating genetic population structure remains underexplored. Here, we construct a freely available computational tool (RGStraP) to estimate RNAseq-based genetic principal components (RG-PCs) and assess whether RG-PCs can be used to control for population structure in gene expression analyses. Using whole blood samples from understudied Nepalese populations and the Geuvadis study, we show that RG-PCs had comparable results to paired array-based genotypes, with high genotype concordance and high correlations of genetic principal components, capturing subpopulations within the dataset. In differential gene expression analysis, we found that inclusion of RG-PCs as covariates reduced test statistic inflation. Our paper demonstrates that genetic population structure can be directly inferred and controlled for using RNAseq data, thus facilitating improved retrospective and future analyses of transcriptomic data
- …
