69 research outputs found
Recommended from our members
The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are
reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution.
It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at
the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in
the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution
seen across climate models
Effectiveness of hepatoprotective drugs for anti-tuberculosis drug-induced hepatotoxicity: a retrospective analysis
Climate simulations for 1880-2003 with GISS modelE
We carry out climate simulations for 1880-2003 with GISS modelE driven by ten
measured or estimated climate forcings. An ensemble of climate model runs is
carried out for each forcing acting individually and for all forcing mechanisms
acting together. We compare side-by-side simulated climate change for each
forcing, all forcings, observations, unforced variability among model ensemble
members, and, if available, observed variability. Discrepancies between
observations and simulations with all forcings are due to model deficiencies,
inaccurate or incomplete forcings, and imperfect observations. Although there
are notable discrepancies between model and observations, the fidelity is
sufficient to encourage use of the model for simulations of future climate
change. By using a fixed well-documented model and accurately defining the
1880-2003 forcings, we aim to provide a benchmark against which the effect of
improvements in the model, climate forcings, and observations can be tested.
Principal model deficiencies include unrealistically weak tropical El Nino-like
variability and a poor distribution of sea ice, with too much sea ice in the
Northern Hemisphere and too little in the Southern Hemisphere. The greatest
uncertainties in the forcings are the temporal and spatial variations of
anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic
Who’s looking at who?
Object abuse: beyond tools, beyond brands, beyond auratic fetishism. A symposium event
This event will consider a less-explored reading of objects and things, questioning our relation with them and exploring the potential of other forms of address. We suggest that a new intention needs to be employed to interrogate our role in relations with objects; that in object abuse there lies the question of who or what is abused. Does co-presence allow another position, redressing our intentions and interactions – who’s looking at who? Might the animistic gaze reveal objects to be more than tools or resources? Or are we blinded by our fetishes?*
Three speakers, from different disciplines, will present a provocation in response to this question.
An Open Space process will be engaged in for the assembled audience and speakers to address this question.
People will participate in an active way, producing a dynamic debate.
Participants will be co-present in a non-hierarchial structure.
*’They (the Moderns) do have a fetish, the strangest one of all: they deny to the objects they fabricate the autonomy they have given them. They pretend they are not surpassed, outstripped by events. They want to keep their mastery, and they find its source within the human subject, the origin of action’.
Bruno Latour, On the Modern Cult of the Factish Gods </p
Quantitative analysis of voltage-gated potassium currents from primary equine (Equus caballus) and elephant (Loxodonta africana) articular chondrocytes.
In this comparative study, we have established in vitro models of equine and elephant articular chondrocytes, examined their basic morphology, and characterized the biophysical properties of their primary voltage-gated potassium channel (Kv) currents. Using whole cell patch-clamp electrophysiological recording from first-expansion and first-passage cells, we measured a maximum Kv conductance of 0.15 +/- 0.04 pS/pF (n = 10) in equine chondrocytes, whereas that in elephant chondrocytes was significantly larger (0.8 +/- 0.4 pS/pF, n = 4, P </= 0.05). Steady-state activation parameters of elephant chondrocytes (V = -22 +/- 6 mV, k = 11.8 +/- 3 mV, n = 4) were not significantly different from those of horse chondrocytes (V = -12.5 +/- 4.3 mV, k = 12 +/- 2, n = 10). This suggests that there would be slightly more resting Kv activation in elephant chondrocytes than in their equine counterparts. Kinetic analysis revealed that both horse and elephant chondrocyte Kv currents had similar activation and inactivation parameters. Pharmacological investigation of equine chondrocyte Kv currents showed them to be powerfully inhibited by the potassium channel blockers tetraethylammonium and 4-aminopyridine but not by dendrotoxin-I. Immunohistochemical studies using polyclonal antibodies to Kv1.1-Kv1.5 provided evidence for expression of Kv1.4 in equine chondrocytes. This is the first electrophysiological study of equine or elephant chondrocytes. The data support the notion that voltage-gated potassium channels play an important role in regulating the membrane potential of articular chondrocytes and will prove useful in future modeling of electromechanotransduction of fully differentiated articular chondrocytes in these and other species
Evidence for functional ATP-sensitive (K(ATP)) potassium channels in human and equine articular chondrocytes.
OBJECTIVE: Chondrocytes are highly sensitive to variations in extracellular glucose and oxygen levels in the extracellular matrix. As such, they must possess a number of mechanisms to detect and respond to alterations in the metabolic state of cartilage. In other organs such as the pancreas, heart and brain, such detection is partly mediated by a family of potassium channels known as K(ATP) (adenosine 5'-triphosphate-sensitive potassium) channels. Here we investigate whether chondrocytes too express functional K(ATP) channels, which might, potentially, serve to couple metabolic state with cell activity. METHODS: Immunohistochemistry was used to explore K(ATP) channel expression in equine and human chondrocytes. Biophysical properties of equine chondrocyte K(ATP) channels were investigated with patch-clamp electrophysiology. RESULTS: Polyclonal antibodies directed against the K(ATP) Kir6.1 subunit revealed high levels of expression in human and equine chondrocytes mainly in superficial and middle zones of normal cartilage. Kir6.1 was also detected in superficial chondrocytes in osteoarthritic (OA) cartilage. In single-channel electrophysiological studies of equine chondrocytes, we found K(ATP) channels to have a maximum unitary conductance of 47 +/- 9 pS (n=5) and a density of expression comparable to that seen in excitable cells. CONCLUSION: We have shown, for the first time, functional K(ATP) channels in chondrocytes. This suggests that K(ATP) channels are involved in coupling metabolic and electrical activities in chondrocytes through sensing of extracellular glucose and intracellular adenosine triphosphate (ATP) levels. Altered K(ATP) channel expression in OA chondrocytes may result in impaired intracellular ATP sensing and optimal metabolic regulation
GABA and glutamate neurons in the VTA regulate sleep and wakefulness
We screened for novel circuits in the mouse brain that promote wakefulness. Chemogenetic activation experiments and electroencephalogram recordings pointed to glutamatergic/nitrergic (NOS1) and GABAergic neurons in the ventral tegmental area (VTA). Activating glutamatergic/NOS1 neurons, which were wake- and rapid eye movement (REM) sleep-active, produced wakefulness through projections to the nucleus accumbens and the lateral hypothalamus. Lesioning the glutamate cells impaired the consolidation of wakefulness. By contrast, activation of GABAergic VTA neurons elicited long-lasting non-rapid-eye-movement-like sleep resembling sedation. Lesioning these neurons produced an increase in wakefulness that persisted for at least 4 months. Surprisingly, these VTA GABAergic neurons were wake- and REM sleep-active. We suggest that GABAergic VTA neurons may limit wakefulness by inhibiting the arousal-promoting VTA glutamatergic and/or dopaminergic neurons and through projections to the lateral hypothalamus. Thus, in addition to its contribution to goal- and reward-directed behaviors, the VTA has a role in regulating sleep and wakefulness
Microstructure and tensile mechanical properties of anisotropic rigid polyurethane foam
10.1007/s11340-008-9146-0Experimental Mechanics486763-776EXMC
- …
