49 research outputs found
Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module
Background
The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.
Methodology/Principal Findings
We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.
Conclusions/Significance
Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund
HVEM Signalling Promotes Colitis
Background
Tumor necrosis factor super family (TNFSF) members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD). Thus, they represent interesting new targets for therapeutic treatment of IBD.
Methodology/Principal Findings
We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i) chemical-induced colitis primarily mediated by innate immune cells; and ii) colitis initiated by CD4+CD45RBhigh T cells following their transfer into immuno-deficient RAG1-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production.
Conclusions
These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells
A Nitrile Hydratase in the Eukaryote Monosiga brevicollis
Bacterial nitrile hydratase (NHases) are important industrial catalysts and waste water remediation tools. In a global computational screening of conventional and metagenomic sequence data for NHases, we detected the two usually separated NHase subunits fused in one protein of the choanoflagellate Monosiga brevicollis, a recently sequenced unicellular model organism from the closest sister group of Metazoa. This is the first time that an NHase is found in eukaryotes and the first time it is observed as a fusion protein. The presence of an intron, subunit fusion and expressed sequence tags covering parts of the gene exclude contamination and suggest a functional gene. Phylogenetic analyses and genomic context imply a probable ancient horizontal gene transfer (HGT) from proteobacteria. The newly discovered NHase might open biotechnological routes due to its unconventional structure, its new type of host and its apparent integration into eukaryotic protein networks
Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family
Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection
LIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage
Phosphorus ingestion improves oral glucose tolerance of healthy male subjects: a crossover experiment
BACKGROUND: Fasting serum phosphorus (P) was reported to be inversely related to serum glucose and insulin, while the impact of P ingestion is not well documented. The effect of P intake with or before glucose ingestion on postprandial glucose and insulin statuses was investigated. METHOD: Two cross over experiments using healthy male subjects were conducted. Experiment 1: Overnight fasted subjects (n = 7) randomly received: 500 mg of P tablets, glucose (75 g) solution with placebo or 500 mg of P tablets. Experiment 2: Overnight fasted subjects (n = 8) underwent similar procedures to those of experiment 1, except that placebo or 500 mg P tablets were given 60 min prior to glucose ingestion. RESULTS: In both experiments, serum P decreased following glucose ingestion. Co-ingestion of P with glucose improved, at time 60 min, postprandial glucose (P < 0.05), insulin (P < 0.05), and insulin sensitivity index (p < 0.006), while P pre-ingestion failed to exert similar effect. CONCLUSION: This study suggests that postprandial glucose and insulin are affected by exogenous P supply, especially when co-ingested with glucose
