25 research outputs found
The pancreatic zymogen granule membrane protein, GP2, binds Escherichia coli type 1 Fimbriae
<p>Abstract</p> <p>Background</p> <p>GP2 is the major membrane protein present in the pancreatic zymogen granule, and is cleaved and released into the pancreatic duct along with exocrine secretions. The function of GP2 is unknown. GP2's amino acid sequence is most similar to that of uromodulin, which is secreted by the kidney. Recent studies have demonstrated uromodulin binding to bacterial Type 1 fimbria. The fimbriae serve as adhesins to host receptors. The present study examines whether GP2 also shares similar binding properties to bacteria with Type 1 fimbria. Commensal and pathogenic bacteria, including E. coli and Salmonella, express type 1 fimbria.</p> <p>Methods</p> <p>An <it>in vitro </it>binding assay was used to assay the binding of recombinant GP2 to defined strains of <it>E. coli </it>that differ in their expression of Type 1 fimbria or its subunit protein, FimH. Studies were also performed to determine whether GP2 binding is dependent on the presence of mannose residues, which is a known determinant for FimH binding.</p> <p>Results</p> <p>GP2 binds <it>E. coli </it>that express Type 1 fimbria. Binding is dependent on GP2 glycosylation, and specifically the presence of mannose residues.</p> <p>Conclusion</p> <p>GP2 binds to Type 1 fimbria, a bacterial adhesin that is commonly expressed by members of the <it>Enterobacteriacae </it>family.</p
Cascading signaling pathways improve the fidelity of a stochastically and deterministically simulated molecular RS latch
<p>Abstract</p> <p>Background</p> <p>While biological systems have often been compared with digital systems, they differ by the strong effect of crosstalk between signals due to diffusivity in the medium, reaction kinetics and geometry. Memory elements have allowed the creation of autonomous digital systems and although biological systems have similar properties of autonomy, equivalent memory mechanisms remain elusive. Any such equivalent memory system, however, must silence the effect of crosstalk to maintain memory fidelity.</p> <p>Results</p> <p>Here, we present a system of enzymatic reactions that behaves like an RS latch (a simple memory element in digital systems). Using both a stochastic molecular simulator and ordinary differential equation simulator, we showed that crosstalk between two latches operating in the same spatial localization disrupts the memory fidelity of both latches. Crosstalk was reduced or silenced when simple reaction loops were replaced with multiple step or cascading reactions, showing that cascading signaling pathways are less susceptible to crosstalk.</p> <p>Conclusion</p> <p>Thus, the common biological theme of cascading signaling pathways is advantageous for maintaining the fidelity of a memory latch in the presence of crosstalk. The experimental implementation of such a latch system will lead to novel approaches to cell control using synthetic proteins and will contribute to our understanding of why cells behave differently even when given the same stimulus.</p
Gene Expression Profiles of Colonic Mucosa in Healthy Young Adult and Senior Dogs
Background: We have previously reported the effects of age and diet on nutrient digestibility, intestinal morphology, and large intestinal fermentation patterns in healthy young adult and senior dogs. However, a genome-wide molecular analysis of colonic mucosa as a function of age and diet has not yet been performed in dogs. Methodology/Principal Findings: Colonic mucosa samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed one of two diets (animal protein-based vs. plant protein-based) for 12 months. Total RNA in colonic mucosa was extracted and hybridized to Affymetrix GeneChipH Canine Genome Arrays. Results indicated that the majority of gene expression changes were due to age (212 genes) rather than diet (66 genes). In particular, the colonic mucosa of senior dogs had increased expression of genes associated with cell proliferation, inflammation, stress response, and cellular metabolism, whereas the expression of genes associated with apoptosis and defensive mechanisms were decreased in senior vs. young adult dogs. No consistent diet-induced alterations in gene expression existed in both age groups, with the effects of diet being more pronounced in senior dogs than in young adult dogs. Conclusion: Our results provide molecular insight pertaining to the aged canine colon and its predisposition to dysfunction and disease. Therefore, our data may aid in future research pertaining to age-associated gastrointestinal physiologica
A computational model of lipopolysaccharide-induced nuclear factor kappa B activation:a key signalling pathway in infection-induced preterm labour
Preterm birth is the single biggest cause of significant neonatal morbidity and mortality, and the incidence is rising. Development of new therapies to treat and prevent preterm labour is seriously hampered by incomplete understanding of the molecular mechanisms that initiate labour at term and preterm. Computational modelling provides a new opportunity to improve this understanding. It is a useful tool in (i) identifying gaps in knowledge and informing future research, and (ii) providing the basis for an in silico model of parturition in which novel drugs to prevent or treat preterm labour can be "tested". Despite their merits, computational models are rarely used to study the molecular events initiating labour. Here, we present the first attempt to generate a dynamic kinetic model that has relevance to the molecular mechanisms of preterm labour. Using published data, we model an important candidate signalling pathway in infection-induced preterm labour: that of lipopolysaccharide (LPS) -induced activation of Nuclear Factor kappa B. This is the first model of this pathway to explicitly include molecular interactions upstream of Nuclear Factor kappa B activation. We produced a formalised graphical depiction of the pathway and built a kinetic model based on ordinary differential equations. The kinetic model accurately reproduced published in vitro time course plots of Lipopolysaccharide-induced Nuclear Factor kappa B activation in mouse embryo fibroblasts. In this preliminary work we have provided proof of concept that it is possible to build computational models of signalling pathways that are relevant to the regulation of labour, and suggest that models that are validated with wet-lab experiments have the potential to greatly benefit the field
Glycoprotein 2 (GP2): Grabbing the FimH+ bacteria into M cells for mucosal immunity
Membranous (m) cells are specialized epithelial antigen-transporting cells scattered in the follicle-associated epithelium covering the gut lymphoid follicles such as Peyer's patches. Although the importance of M cells as a main portal for luminal antigens has long been recognized, molecular mechanisms for M-cell antigen uptake has remained largely elusive. We have recently found that glycoprotein 2 (GP2) is exclusively expressed on M cells among intestinal epithelial cells and serves as an uptake receptor for a subset of commensal and pathogenic bacteria. GP2 interacts with FimH, a major component of the type 1 pilus on the outer membrane of a subset of gram-negative enterobacilli such as E. coli and Salmonella enterica. Furthermore, GP2-FimH interaction is necessary for efficient uptake of FimH+ bacteria by M cells and subsequent bacteria-specific mucosal immune responses. Pancreatic GP2 may also be involved in innate immunity by ‘opsonization’ of FimH+ bacteria to facilitate their egestion in feces as well as translocation across the intestinal epithelium
