801 research outputs found

    Proposal for optical parity state re-encoder

    Full text link
    We propose a re-encoder to generate a refreshed parity encoded state from an existing parity encoded state. This is the simplest case of the scheme by Gilchrist et al. (Phys. Rev. A 75, 052328). We show that it is possible to demonstrate with existing technology parity encoded quantum gates and teleportation.Comment: 8 pages, 4 figure

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    Adding control to arbitrary unknown quantum operations

    Get PDF
    While quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. We demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity.Comment: 9 pages, 8 figure

    Multimode quantum interference of photons in multiport integrated devices

    Get PDF
    We report the first demonstration of quantum interference in multimode interference (MMI) devices and a new complete characterization technique that can be applied to any photonic device that removes the need for phase stable measurements. MMI devices provide a compact and robust realization of NxM optical circuits, which will dramatically reduce the complexity and increase the functionality of future generations of quantum photonic circuits

    Integrated photonic quantum gates for polarization qubits

    Get PDF
    Integrated photonic circuits have a strong potential to perform quantum information processing. Indeed, the ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for polarization encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.Comment: 6 pages, 4 figure

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations

    Neonatal Rats Exhibit a Predominantly Anti-Inflammatory Response following Spinal Cord Injury.

    Full text link
    It has been reported that children may respond better than adults to a spinal cord injury (SCI) of similar severity. There are known biomechanical differences in the developing spinal cord that may contribute to this "infant lesion effect," but the underlying mechanisms are unknown. Using immunohistochemistry, we have previously demonstrated a different injury progression and immune cell response after a mild thoracic contusion SCI in infant rats, as compared to adult rats. Here, we investigated the acute inflammatory responses using flow cytometry and ELISA at 1 h, 24 h, and 1 week after SCI in neonatal (P7) and adult (9 weeks) rats, and locomotor recovery was examined for 6 weeks after injury. Adult rats exhibited a pronounced pro-inflammatory response characterized by neutrophils and M1-like macrophage infiltration and Th1 cytokine secretion. Neonatal rats exhibited a decreased pro-inflammatory response characterized by a higher proportion of M2-like macrophages and reduced Th1 cytokine responses, as compared to adults. These results suggest that the initial inflammatory response to SCI is predominantly anti-inflammatory in very young animals

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio
    corecore