1,074 research outputs found
Composite structural motifs of binding sites for delineating biological functions of proteins
Most biological processes are described as a series of interactions between
proteins and other molecules, and interactions are in turn described in terms
of atomic structures. To annotate protein functions as sets of interaction
states at atomic resolution, and thereby to better understand the relation
between protein interactions and biological functions, we conducted exhaustive
all-against-all atomic structure comparisons of all known binding sites for
ligands including small molecules, proteins and nucleic acids, and identified
recurring elementary motifs. By integrating the elementary motifs associated
with each subunit, we defined composite motifs which represent
context-dependent combinations of elementary motifs. It is demonstrated that
function similarity can be better inferred from composite motif similarity
compared to the similarity of protein sequences or of individual binding sites.
By integrating the composite motifs associated with each protein function, we
define meta-composite motifs each of which is regarded as a time-independent
diagrammatic representation of a biological process. It is shown that
meta-composite motifs provide richer annotations of biological processes than
sequence clusters. The present results serve as a basis for bridging atomic
structures to higher-order biological phenomena by classification and
integration of binding site structures.Comment: 34 pages, 7 figure
Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations
The widespread introduction of artemisinin-based combination therapy has contributed to
recent reductions in malaria mortality. Combination therapies have a range of advantages,
including synergism, toxicity reduction, and delaying the onset of resistance acquisition.
Unfortunately, antimalarial combination therapy is limited by the depleting repertoire of
effective drugs with distinct target pathways. To fast-track antimalarial drug discovery, we
have previously employed drug-repositioning to identify the anti-amoebic drug, emetine
dihydrochloride hydrate, as a potential candidate for repositioned use against malaria.
Despite its 1000-fold increase in in vitro antimalarial potency (ED50 47 nM) compared with
its anti-amoebic potency (ED50 26±32 uM), practical use of the compound has been limited
by dose-dependent toxicity (emesis and cardiotoxicity). Identification of a synergistic partner
drug would present an opportunity for dose-reduction, thus increasing the therapeutic window.
The lack of reliable and standardised methodology to enable the in vitro definition of
synergistic potential for antimalarials is a major drawback. Here we use isobologram and
combination-index data generated by CalcuSyn software analyses (Biosoft v2.1) to define
drug interactivity in an objective, automated manner. The method, based on the median
effect principle proposed by Chou and Talalay, was initially validated for antimalarial application
using the known synergistic combination (atovaquone-proguanil). The combination was
used to further understand the relationship between SYBR Green viability and cytocidal versus
cytostatic effects of drugs at higher levels of inhibition. We report here the use of the
optimised Chou Talalay method to define synergistic antimalarial drug interactivity between
emetine dihydrochloride hydrate and atovaquone. The novel findings present a potential
route to harness the nanomolar antimalarial efficacy of this affordable natural product
Optimal Drug Synergy in Antimicrobial Treatments
The rapid proliferation of antibiotic-resistant pathogens has spurred the use of drug combinations to maintain clinical efficacy and combat the evolution of resistance. Drug pairs can interact synergistically or antagonistically, yielding inhibitory effects larger or smaller than expected from the drugs' individual potencies. Clinical strategies often favor synergistic interactions because they maximize the rate at which the infection is cleared from an individual, but it is unclear how such interactions affect the evolution of multi-drug resistance. We used a mathematical model of in vivo infection dynamics to determine the optimal treatment strategy for preventing the evolution of multi-drug resistance. We found that synergy has two conflicting effects: it clears the infection faster and thereby decreases the time during which resistant mutants can arise, but increases the selective advantage of these mutants over wild-type cells. When competition for resources is weak, the former effect is dominant and greater synergy more effectively prevents multi-drug resistance. However, under conditions of strong resource competition, a tradeoff emerges in which greater synergy increases the rate of infection clearance, but also increases the risk of multi-drug resistance. This tradeoff breaks down at a critical level of drug interaction, above which greater synergy has no effect on infection clearance, but still increases the risk of multi-drug resistance. These results suggest that the optimal strategy for suppressing multi-drug resistance is not always to maximize synergy, and that in some cases drug antagonism, despite its weaker efficacy, may better suppress the evolution of multi-drug resistance.Molecular and Cellular Biolog
A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease
Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts
Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials
10.1186/1475-2891-13-7Nutrition Journal131
Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas
[Abstract] Genes of the Wnt and Frizzled class, expressed in HNSCC tissue and cell lines, have an established role in cell morphogenesis and differentiation, and also they have oncogenic properties. We studied Wnt and Fz genes as potential tumor-associated markers in HNSCC by qPCR. Expression levels of Wnt and Fz genes in 22 unique frozen samples from HNSCC were measured. We also assessed possible correlation between the expression levels obtained in cancer samples in relation to clinicopathologic outcome. Wnt-1 was not expressed in the majority of the HNSCC studied, whereas Wnt-5A was the most strongly expressed by the malignant tumors. Wnt-10B expression levels were related with higher grade of undifferentiation. Related to Fz genes, Fz-5 showed more expression levels in no-affectation of regional lymph nodes. Kaplan–Meier survival analyses suggest a reduced time of survival for low and high expression of Wnt-7A and Fz-5 mRNA, respectively. qPCR demonstrated that HNSCC express Wnt and Fz members, and suggested that Wnt and Fz signaling is activated in HNSCC cells
Recommended from our members
The role of horizontal resolution in simulating drivers of the global hydrological cycle
The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises
Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders
Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
A huge intraductal papillary mucinous carcinoma of the bile duct treated by right trisectionectomy with caudate lobectomy
<p>Abstract</p> <p>Background</p> <p>Because intraductal papillary mucinous neoplasm of the bile duct (IPMN-B) is believed to show a better clinical course than non-papillary biliary neoplasms, it is important to make a precise diagnosis and to perform complete surgical resection.</p> <p>Case presentation</p> <p>We herein report a case of malignant IPMN-B treated by right trisectionectomy with caudate lobectomy and extrahepatic bile duct resection. Radiologic images showed marked dilatation of the left medial sectional bile duct (B4) resulting in a bulky cystic mass with multiple internal papillary projections. Duodenal endoscopic examination demonstrated very patulous ampullary orifice with mucin expulsion and endoscopic retrograde cholangiogram confirmed marked cystic dilatation of B4 with luminal filling defects. These findings suggested IPMN-B with malignancy potential. The functional volume of the left lateral section was estimated to be 45%. A planned extensive surgery was successfully performed. The remnant bile ducts were also dilated but had no macroscopic intraluminal tumorous lesion. The histopathological examination yielded the diagnosis of mucin-producing oncocytic intraductal papillary carcinoma of the bile duct with poorly differentiated carcinomas showing neuroendocrine differentiation. The tumor was 14.0 × 13.0 cm-sized and revealed no stromal invasiveness. Resection margins of the proximal bile duct and hepatic parenchyma were free of tumor cell. The patient showed no postoperative complication and was discharged on 10<sup>th </sup>postoperative date. He has been regularly followed at outpatient department with no evidence of recurrence.</p> <p>Conclusion</p> <p>Considering a favorable prognosis of IPMN-B compared to non-papillary biliary neoplasms, this tumor can be a good indication for aggressive surgical resection regardless of its tumor size.</p
- …
