256 research outputs found

    A novel Hash-Based File Clustering scheme for efficient distributing, storing and retrieving of large scale Health Records

    Full text link
    Cloud computing has been adopted as an efficient computing infrastructure model for provisioning resources and providing services to users. Several distributed resource models such as Hadoop and parallel databases have been deployed in healthcare-related services to manage electronic health records (EHR). However, these models are inefficient for managing a large number of small files and hence they are not widely deployed in Healthcare Information Systems. This paper proposed a novel Hash-Based File Clustering Scheme (HBFC) to distribute, store and retrieve EHR efficiently in cloud environments. The HBFC possesses two distinctive features: it utilizes hashing to distribute files into clusters in a control way and it utilizes P2P structures for data management. HBFC scheme is demonstrated to be effective in handling big health data that comprises of a large number of small files in various formats. It allows users to retrieve and access data records efficiently. The initial implementation results demonstrate that the proposed scheme outperforms original P2P system in term of data lookup latency

    Data Mobility as a Service

    Full text link
    © 2016 IEEE. Cloud computing and cloud services provide an alternative IT infrastructure and service models for users. The users use cloud to store their data, delegate the management of the data, and deploy their services cost-effectively. This usage model, however, raised a number of concerns relating to data control, data protection and data mobility: 1) users may lose control of their resource, 2) data protection schemes are not adequate when data is moved to a new cloud, 3) tracking and tracing changes of data location as well as accountability of data operations are not well supported. To address these issues, this paper proposes a novel cloud service for data mobility from two aspects: data mobility and data protection. A data mobility service is designed and implemented to manage data mobility and data traceability. A Location Register Database (LRD) is also developed to support the service. Furthermore, data is protected by a data security service CPRBAC (Cloud-based Privacy-Aware Role Based Access Control) and an Auditing service that are capable of verifying data operations and triggering alarms on data violations in the Cloud environment

    Data mobility management model for active data cubes

    Full text link
    © 2015 IEEE. Cloud computing dramatically reduces the expense and complexity of managing IT systems. Business customers do not need to invest in their own costly IT infrastructure, but can delegate and deploy their services effectively to cloud vendors and service providers. A number of security and protection mechanisms have been proposed to prevent the disclosure of sensitive information or tempering with the data by employing various policy, encryption, and monitoring approaches. However, few efforts have been focused on data mobility issues in terms of protection of data when it is moved within a cloud or to and from a new cloud environment. To allay users' concern of data control, data ownership, security and privacy, we propose a novel data mobility management model which ensures continuity protecting data at new cloud hosts at new data locations. The model provides a mobility service to handle data moving operation that relies on a new location database service. The new model allows the establishment of a proxy supervisor in the new environment and the ability of the active data to record its own location. The experimental outcomes demonstrate the feasibility, proactivity, and efficiency by the full mobility management model

    Gradient Descent-Based Direction-of-Arrival Estimation for Lens Antenna Array

    Full text link
    In this letter, we investigate a novel optimization approach to direction-of-arrival (DoA) estimation for a lens antenna array. Inspired by a property of the sinc function and 2{\ell _{2}}-norm optimization, we develop the gradient descent-based spatial spectrum reconstruction (GD-SSR) to estimate the DoAs based on the sum signal covariance vector (SSCV). Our proposed algorithm does not require a priori knowledge of signal number and has a lower complexity compared with existing techniques while achieving a better estimation performance, even in a low-SNR regime. In addition, the proposed model does not require any pretraining process as prior learning-based methods. The simulation results show that our scheme not only outperforms other techniques but also resolves the angular ambiguity problem

    Short-Packet URLLCs for MIMO Underlay Cognitive Multihop Relaying with Imperfect CSI

    Get PDF
    In this work, we investigate short-packet communications for multiple-input multiple-output underlay cognitive multihop relay networks with multiple primary users, where transceivers transmit and receive short packets to provide ultra-reliable and low-latency communications (uRLLCs). For performance evaluation, the closed-form expressions of the end-to-end (E2E) block error rate (BLER) for the considered systems are derived in a practical scenario under imperfect channel state information of the interference channels, from which the E2E throughput, energy efficiency (EE), latency, reliability, and asymptotic analysis are also studied. Based on the analytical results, we adapt some state-of-the-art machine learning (ML)-aided estimators to predict the system performance in terms of the E2E throughput, EE, latency, and reliability for real-time configurations. We also obtain the closed-form expressions for the optimal power-allocation and relay-location strategies to minimize the asymptotic E2E BLER under the proportional tolerable interference power and uRLLC constraints, which require negligible computational complexity and offer significant power savings. Furthermore, the ML-based evaluation achieves equivalent performance while significantly reducing the execution time compared to conventional analytical and simulation methods. Among the ML frameworks, the extreme gradient boosting model is demonstrated to be the most efficient estimator for future practical real-time applications

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    BONEcheck: A digital tool for personalized bone health assessment.

    Get PDF
    OBJECTIVES: Osteoporotic fracture is a significant public health burden associated with increased mortality risk and substantial healthcare costs. Accurate and early identification of high-risk individuals and mitigation of their risks is a core part of the treatment and prevention of fractures. Here we introduce a digital tool called 'BONEcheck' for personalized assessment of bone health. METHODS: The development of BONEcheck primarily utilized data from the prospective population-based Dubbo Osteoporosis Epidemiology Study and the Danish Nationwide Registry. BONEcheck has 3 modules: input data, risk estimates, and risk context. Input variables include age, gender, prior fracture, fall incidence, bone mineral density (BMD), comorbidities, and genetic variants associated with BMD. RESULTS: Based on the input variables, BONEcheck estimates the probability of any fragility fracture and hip fracture within 5 years, subsequent fracture risk, skeletal age, and time to reach osteoporosis. The probability of fracture is shown in both numeric and human icon array formats. The risk is also contextualized within the framework of treatment and management options on Australian guidelines, with consideration given to the potential fracture risk reduction and survival benefits. Skeletal age was estimated as the sum of chronological age and years of life lost due to a fracture or exposure to risk factors that elevate mortality risk. CONCLUSIONS: BONEcheck is an innovative tool that empowers doctors and patients to engage in well-informed discussions and make decisions based on the patient's risk profile. Public access to BONEcheck is available via https://bonecheck.org and in Apple Store (iOS) and Google Play (Android)

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).

    Get PDF
    BACKGROUND: Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. RESULTS: Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (H exp , one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased H exp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. CONCLUSIONS: The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae
    corecore