180 research outputs found

    Girls' disruptive behavior and its relationship to family functioning: A review

    Get PDF
    Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Breeding productivity, nest-site selection and conservation needs of the endemic Turkestan Ground-jay Podoces panderi

    Get PDF
    The Turkestan Ground-jay Podoces panderi, a corvid endemic to the deserts of Central Asia, is both understudied and under-protected. Using standardised nest-monitoring protocols and nest cameras, we estimated its breeding productivity for the first time as 0.586 fledglings per nesting attempt (inter-quartile range, IQR 0.413‒0.734), strongly constrained by a diverse set of predator species (accounting for 88% of failures), supporting the broad pattern that a wide spectrum of nest predators operate in arid environments. The probability of nest success for the 35 days from the start of incubation to fledging was low, 0.186 ± 0.06 se (N = 37), with no influence of season date, nest height or nest shrub species. However, pervasive shrub harvest severely limited availability of taller shrubs for nest-site selection, and thus our ability to detect any effect of height on nest survival. Mean clutch size was 4.8 ± 0.8 sd while hatching probability of an egg from a clutch surviving incubation was 0.800 ± 0.050 se and fledging probability was 0.824 ± 0.093 se for individual chicks in successful nests (i.e. that fledged one or more chicks). Two shrub genera, saxaul Haloxylon spp. and Calligonum spp., were used for nesting more frequently than expected (χ152 = 784.02, P < 0.001), highlighting their importance to breeding habitat suitability. This near-sole reliance on these taller shrub genera, both targeted for illegal cutting, indicates that habitat degradation may lead to increased predation and declines in productivity. Habitat conservation is, therefore, likely to be the most important management strategy for the species and other components of desert systems, as management of so diverse a set of nest predators would be both impractical and inappropriate

    Functional Interactions between the erupted/tsg101 Growth Suppressor Gene and the DaPKC and rbf1 Genes in Drosophila Imaginal Disc Tumors

    Get PDF
    BACKGROUND: The Drosophila gene erupted (ept) encodes the fly homolog of human Tumor Susceptibility Gene-101 (TSG101), which functions as part of the conserved ESCRT-1 complex to facilitate the movement of cargoes through the endolysosomal pathway. Loss of ept or other genes that encode components of the endocytic machinery (e.g. synatxin7/avalanche, rab5, and vps25) produces disorganized overgrowth of imaginal disc tissue. Excess cell division is postulated to be a primary cause of these 'neoplastic' phenotypes, but the autonomous effect of these mutations on cell cycle control has not been examined. PRINCIPAL FINDINGS: Here we show that disc cells lacking ept function display an altered cell cycle profile indicative of deregulated progression through the G1-to-S phase transition and express reduced levels of the tumor suppressor ortholog and G1/S inhibitor Rbf1. Genetic reductions of the Drosophila aPKC kinase (DaPKC), which has been shown to promote tumor growth in other fly tumor models, prevent both the ept neoplastic phenotype and the reduction in Rbf1 levels that otherwise occurs in clones of ept mutant cells; this effect is coincident with changes in localization of Notch and Crumbs, two proteins whose sorting is altered in ept mutant cells. The effect on Rbf1 can also be blocked by removal of the gamma-secretase component presenilin, suggesting that cleavage of a gamma-secretase target influences Rbf1 levels in ept mutant cells. Expression of exogenous rbf1 completely ablates ept mutant eye tissues but only mildly affects the development of discs composed of cells with wild type ept. CONCLUSIONS: Together, these data show that loss of ept alters nuclear cell cycle control in developing imaginal discs and identify the DaPKC, presenilin, and rbf1 genes as modifiers of molecular and cellular phenotypes that result from loss of ept

    The osteology of ‘Periptychus carinidens’: a robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America

    Get PDF
    Periptychus is the archetypal genus of Periptychidae, a clade of prolific Paleocene 'condylarth' mammals from North America that were among the first placental mammals to radiate after the end-Cretaceous extinction, remarkable for their distinctive dental anatomy. A comprehensive understanding of the anatomy of Periptychus has been hindered by a lack of cranial and postcranial material and only cursory description of existing material. We comprehensively describe the cranial, dental and postcranial anatomy of Periptychus carinidens based on new fossil material from the early Paleocene (Torrejonian) of New Mexico, USA. The cranial anatomy of Periptychus is broadly concurrent with the inferred plesiomorphic eutherian condition, albeit more robust in overall construction. The rostrum is moderately elongate with no constriction, the facial region is broad, and the braincase is small with a well-exposed mastoid on the posterolateral corner and tall sagittal and nuchal crests. The dentition of Periptychus is characterized by strongly crenulated enamel, enlarged upper and lower premolars with a tall centralised paracone/protoconid. The postcranial skeleton of Periptychus is that of a robust, medium-sized (~20 Kg) stout-limbed animal that was incipiently mediportal and adopted a plantigrade stance. The structure of the fore- and hindlimb of Periptychus corresponds to that of a typically terrestrial mammal, while morphological features of the forelimb such as the low tubercles of the humerus, long and prominent deltopectoral crest, pronounced medial epicondyle, and hemispherical capitulum indicate some scansorial and/or fossorial ability. Most striking is the strongly dorsoplantarly compressed astragalus of Periptychus, which in combination with the distal crus and calcaneal morphology indicates a moderately mobile cruropedal joint. The anatomy of Periptychus is unique and lacks any extant analogue; it combines a basic early placental body plan with numerous unique specializations in its dental, cranial and postcranial anatomy that exemplify the ability of mammals to adapt and evolve following catastrophic environmental upheaval

    Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen

    Get PDF
    Prion diseases are characterised by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. Following peripheral exposure high levels of prion-specific PrPSc accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrPC is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrPC expression was specifically “switched on” or “off” only on FDC. We show that PrPC-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrPC-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrPC expression on FDC

    A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis

    Get PDF
    BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(-) and HCO(3)(-), in mediating prostate HCO(3)(-) secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3)(-) content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3)(-) on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3)(-) secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3)(-) secretion may be up-regulated in prostatitis as a host defense mechanism

    The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics

    Get PDF
    corecore