41 research outputs found

    Detection of intergalactic red-giant-branch stars in the Virgo cluster

    Get PDF
    It has been suspected for nearly 50 years that clusters of galaxies contain a population of intergalactic stars, ripped from galaxies during cluster formation or when the galaxies' orbits take them through the cluster center. Support for the existence of such a population of free-floating stars comes from measurements of the diffuse light in clusters, and from recent detections of planetary nebulae with positions and/or velocities far removed from any observed cluster galaxy. But estimates for the mass of the diffuse population and its distribution relative to the galaxies are still highly uncertain. Here we report the direct detection of intergalactic stars in deep images of a blank field in the Virgo Cluster. The data suggest that approximately 10% of the stellar mass of the cluster is in intergalactic stars. We observe a relatively homogeneous distribution of stars, with evidence of a slight gradient toward M87.Comment: Accepted for publication in Nature. 10 pages, 2 postscript figures included. Uses nature.sty and astrobib.sty. (Astrobib is available from http://www.stsci.edu/software/TeX.html.

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF

    Energy-scaling behavior of intrinsic transverse-momentum parameters in Drell-Yan simulation

    Get PDF
    Data Availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy https://dx.doi.org/10.7483/OPENDATA.CMS.7347.JDWH .A preprint version of the article is available on arXiv, arXiv:2409.17770v2 [hep-ph] (https://arxiv.org/abs/2409.17770). [v2] Tue, 8 Apr 2025 23:23:48 UTC (450 KB). Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/GEN-22-001 (CMS Public Pages). Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex). Report numbers: CMS-GEN-22-001, CERN-EP-2024-216An analysis is presented based on models of the intrinsic transverse momentum (intrinsic ) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans 3 orders of magnitude in center-of-mass energy and 2 orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic parameters, independent of the dilepton invariant mass at a given center-of-mass energy.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA)

    The CMS Statistical Analysis and Combination Tool: Combine

    Get PDF
    Metrics: https://link.springer.com/article/10.1007/s41781-024-00121-4/metricsThis paper describes the Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run Combine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of Combine. However, the online documentation referenced within this paper provides an up-to-date and complete user guide.CERN (European Organization for Nuclear Research)STFC (United Kingdom)Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundatio

    Linear redshift distortions: A review

    Get PDF
    Abstract. Redshift maps of galaxies in the Universe are distorted by the peculiar velocities of galaxies along the line of sight. The amplitude of the distortions on large, linear scales yields a measurement of the linear redshift distortion parameter, which is β ≈ Ω0.6 0 /b in standard cosmology with cosmological density Ω0 and light-to-mass bias b. All measurements of β from linear redshift distortions published up to mid 1997 are reviewed. The average and standard deviation of the reported values is βoptical = 0.52 ± 0.26 for optically selected galaxies, and βIRAS = 0.77 ± 0.22 for IRAS selected galaxies. The implied relative bias is boptical/bIRAS ≈ 1.5. If optical galaxies are unbiased, then Ω0 = 0.33 +0.32 −0.22 are unbiased, then Ω0 = 0.63 +0.3
    corecore