32 research outputs found
Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions
<p>Abstract</p> <p>Background</p> <p><it>Cortinarius </it>species in section <it>Calochroi </it>display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) <it>C</it>. <it>arcuatorum</it>, 2) <it>C. aureofulvus</it>, 3) <it>C</it>. <it>elegantior </it>and 4) <it>C. napus</it>, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification.</p> <p>Results</p> <p>Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in <it>C</it>. <it>arcuatorum </it>and <it>C</it>. <it>elegantior</it>, while <it>C</it>. <it>aureofulvus </it>showed considerably less population structure and <it>C. napus </it>lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within <it>C</it>. <it>arcuatorum, C. aureofulvus </it>and <it>C</it>. <it>elegantior </it>show little or no morphological differentiation, whereas in <it>C. napus </it>there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of <it>C. albobrunnoides </it>and <it>C. albobrunnoides </it>var. <it>violaceovelatus </it>were identical to one another and are treated as one species with a wider range of geographic distribution under <it>C. napus</it>.</p> <p>Conclusions</p> <p>Our results indicate that each of the <it>Calochroi </it>species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of <it>C</it>. <it>arcuatorum </it>diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in <it>C</it>. <it>elegantior </it>gave rise to the New World and Old World haplotypes, respectively; and 3) the low levels of genetic divergence within <it>C</it>. <it>aureofulvus </it>and <it>C</it>. <it>napus </it>may be the result of more recent demographic population expansions. The scenario of migration via the Bering Land Bridge provides the most probable explanation for contemporaneous disjunct geographic distributions of these species, but it does not offer an explanation for the low degree of genetic divergence between populations of <it>C. aureofulvus </it>and <it>C. napus</it>. Our findings are mostly consistent with the designation of New World allopatric populations as separate species from the European counterpart species <it>C. arcuatorum </it>and <it>C. elegantior</it>. We propose the synonymy of <it>C. albobrunnoides</it>, <it>C. albobrunnoides </it>var. <it>violaceovelatus </it>and <it>C. subpurpureophyllus </it>var. <it>sulphureovelatus </it>with <it>C. napus</it>. The results also reinforce previous observations that linked <it>C. arcuatorum </it>and <it>C. aureofulvus </it>displaying distributions in parts of North America and Europe. Interpretations of the population structure of these fungi suggest that host tree history has heavily influenced their modern distributions; however, the complex issues related to co-migration of these fungi with their tree hosts remain unclear at this time.</p
Two new species in Cortinarius subgenus Telamonia, Cortinarius brunneifolius and C. leiocastaneus, from Fennoscandia (Basidiomycota, Agaricales)
Morphogenetic diversity of the ectomycorrhizal genus Cortinarius section Calochroi in the Iberian Peninsula
Sequence analysis of the ribosomal DNA internal transcribed spacer regions in Termitomyces heimii species
Amyloidity is not diagnostic for species in the Mycena pearsoniana complex (Mycena sectio Calodontes)
Two new species of Cortinarius, subgenus Telamonia, sections Colymbadini and Uracei, from Europe
A comparison between ITS phylogenetic relationships and morphological species recognition within <em>Mycena </em>sect. <em>Calodontes </em>in Northern Europe
The members of Mycena sect. Calodontes (Tricholomataceae s. l., Basidiomycota) are characterised by a collybioid aspect and more or less purplish to reddish colours and a distinct raphanoid odour. In Europe, nine species have been recognised though some of these based on somewhat dubious morphological differences. Historically, most were assigned to Mycena pura. However, since Mycena pura displays one of the most striking colour variabilities within European agarics, many attempts have been made to subdivide it into independent entities, and several forms, varieties and species have been split from Mycena pura s. l. based largely on differences in colouration, gross macromorphology or other phenetic traits. We developed a large sample of ITS sequences of all species of sect. Calodontes known from Europe for which vouchers exist. Furthermore, partial LSU data were developed and additional sequences downloaded from GENBANK to assess the relationship of Calodontes with other Mycena spp. We show that most Calodontes form a monophyletic group including a few North and South American collections, but that this cannot be conclusively shown when an additional North American sequence is added. For all other species than M. pura and M. diosma, we found morphological species recognition to be in agreement with the ITS data. Several significantly different clades can be recognised within the M. pura morphospecies, none of which can be linked to the observed (and described by proxy) colour varieties/forms. Indications of a possible environmental basis of the colour differentiation in the M. pura morphospecies are discussed
