1,995 research outputs found
Spectroscopic Properties of QSOs Selected from Ultraluminous Infrared Galaxy Samples
We performed spectroscopic observations for a large infrared QSO sample with
a total of 25 objects. The sample was compiled from the QDOT redshift survey,
the 1 Jy ULIRGs survey and a sample obtained by a cross-correlation study of
the IRAS Point Source Catalogue with the ROSAT All Sky Survey Catalogue.
Statistical analyses of the optical spectra show that the vast majority of
infrared QSOs have narrow permitted emission lines (with FWHM of Hbeta less
than 4000 km/s) and more than 60% of them are luminous narrow line Seyfert 1
galaxies. Two of the infrared QSOs are also classified as low ionization BAL
QSOs. More than 70% of infrared QSOs are moderately or extremely strong Fe II
emitters. This is the highest percentage of strong Fe II emitters in all
subclasses of QSO/Seyfert 1 samples. We found that the Fe II to Hbeta, line
ratio is significantly correlated with the [OIII]5007 peak and Hbeta blueshift.
Soft X-ray weak infrared QSOs tend to have large blueshifts in permitted
emission lines and significant Fe II48,49 (5100--5400 A) residuals relative to
the Boroson & Green Fe II template. If the blueshifts in permitted lines are
caused by outflows, then they appear to be common in infrared QSOs. As the
infrared-selected QSO sample includes both luminous narrow line Seyfert 1
galaxies and low ionization BAL QSOs, it could be a useful laboratory to
investigate the evolutionary connection among these objects.Comment: 35 pages,14 figures, 4 tables, accepted for publication in A
Diffraction of complex molecules by structures made of light
We demonstrate that structures made of light can be used to coherently
control the motion of complex molecules. In particular, we show diffraction of
the fullerenes C60 and C70 at a thin grating based on a standing light wave. We
prove experimentally that the principles of this effect, well known from atom
optics, can be successfully extended to massive and large molecules which are
internally in a thermodynamic mixed state and which do not exhibit narrow
optical resonances. Our results will be important for the observation of
quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure
The VMC survey - XI : Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae
Copyright American Astronomical SocietyWe present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.Peer reviewe
Dark soliton states of Bose-Einstein condensates in anisotropic traps
Dark soliton states of Bose-Einstein condensates in harmonic traps are
studied both analytically and computationally by the direct solution of the
Gross-Pitaevskii equation in three dimensions. The ground and self-consistent
excited states are found numerically by relaxation in imaginary time. The
energy of a stationary soliton in a harmonic trap is shown to be independent of
density and geometry for large numbers of atoms. Large amplitude field
modulation at a frequency resonant with the energy of a dark soliton is found
to give rise to a state with multiple vortices. The Bogoliubov excitation
spectrum of the soliton state contains complex frequencies, which disappear for
sufficiently small numbers of atoms or large transverse confinement. The
relationship between these complex modes and the snake instability is
investigated numerically by propagation in real time.Comment: 11 pages, 8 embedded figures (two in color
Scattering of short laser pulses from trapped fermions
We investigate the scattering of intense short laser pulses off trapped cold
fermionic atoms. We discuss the sensitivity of the scattered light to the
quantum statistics of the atoms. The temperature dependence of the scattered
light spectrum is calculated. Comparisons are made with a system of classical
atoms who obey Maxwell-Boltzmann statistics. We find the total scattering
increases as the fermions become cooler but eventually tails off at very low
temperatures (far below the Fermi temperature). At these low temperatures the
fermionic degeneracy plays an important role in the scattering as it inhibits
spontaneous emission into occupied energy levels below the Fermi surface. We
demonstrate temperature dependent qualitative changes in the differential and
total spectrum can be utilized to probe quantum degeneracy of trapped Fermi gas
when the total number of atoms are sufficiently large . At smaller
number of atoms, incoherent scattering dominates and it displays weak
temperature dependence.Comment: updated figures and revised content, submitted to Phys.Rev.
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the top quark pair production cross section in
ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with
the Collider Detector at Fermilab. We select ttbar decays into the final states
e nu + jets and mu nu + jets, in which at least one b quark from the t-quark
decays is identified using a secondary vertex-finding algorithm. Assuming a top
quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat)
+1.1-0.9 (syst) pb. We also report the first observation of ttbar with
significance greater than 5 sigma in the subsample in which both b quarks are
identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3
(syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
- …
