171 research outputs found
R-process enrichment from a single event in an ancient dwarf galaxy
Elements heavier than zinc are synthesized through the (r)apid and (s)low
neutron-capture processes. The main site of production of the r-process
elements (such as europium) has been debated for nearly 60 years. Initial
studies of chemical abundance trends in old Milky Way halo stars suggested
continual r-process production, in sites like core-collapse supernovae. But
evidence from the local Universe favors r-process production mainly during rare
events, such as neutron star mergers. The appearance of a europium abundance
plateau in some dwarf spheroidal galaxies has been suggested as evidence for
rare r-process enrichment in the early Universe, but only under the assumption
of no gas accretion into the dwarf galaxies. Cosmologically motivated gas
accretion favors continual r-process enrichment in these systems. Furthermore,
the universal r-process pattern has not been cleanly identified in dwarf
spheroidals. The smaller, chemically simpler, and more ancient ultra-faint
dwarf galaxies assembled shortly after the first stars formed, and are ideal
systems with which to study nucleosynthesis events such as the r-process.
Reticulum II is one such galaxy. The abundances of non-neutron-capture elements
in this galaxy (and others like it) are similar to those of other old stars.
Here, we report that seven of nine stars in Reticulum II observed with
high-resolution spectroscopy show strong enhancements in heavy neutron-capture
elements, with abundances that follow the universal r-process pattern above
barium. The enhancement in this "r-process galaxy" is 2-3 orders of magnitude
higher than that detected in any other ultra-faint dwarf galaxy. This implies
that a single rare event produced the r-process material in Reticulum II. The
r-process yield and event rate are incompatible with ordinary core-collapse
supernovae, but consistent with other possible sites, such as neutron star
mergers.Comment: Published in Nature, 21 Mar 2016:
http://dx.doi.org/10.1038/nature1742
H_2 emission arises outside photodissociation regions in ultra-luminous infrared galaxies
Ultra-luminous infrared galaxies are among the most luminous objects in the
local universe and are thought to be powered by intense star formation. It has
been shown that in these objects the rotational spectral lines of molecular
hydrogen observed at mid-infrared wavelengths are not affected by dust
obscuration, leaving unresolved the source of excitation of this emission. Here
I report an analysis of archival Spitzer Space Telescope data on ultra-luminous
infrared galaxies and demonstrate that star formation regions are buried inside
optically thick clouds of gas and dust, so that dust obscuration affects
star-formation indicators but not molecular hydrogen. I thereby establish that
the emission of H_2 is not co-spatial with the buried starburst activity and
originates outside the obscured regions. This is rather surprising in light of
the standard view that H_2 emission is directly associated with star-formation
activity. Instead, I propose that H_2 emission in these objects traces shocks
in the surrounding material, which are in turn excited by interactions with
nearby galaxies, and that powerful large-scale shocks cooling by means of H_2
emission may be much more common than previously thought. In the early
universe, a boost in H_2 emission by this process may speed up the cooling of
matter as it collapsed to form the first stars and galaxies and would make
these first structures more readily observable.Comment: Main text and supplemental information, 21 pages including 6 figures,
2 table
Exploring the Universe with Metal-Poor Stars
The early chemical evolution of the Galaxy and the Universe is vital to our
understanding of a host of astrophysical phenomena. Since the most metal-poor
Galactic stars (with metallicities down to [Fe/H]\sim-5.5) are relics from the
high-redshift Universe, they probe the chemical and dynamical conditions of the
Milky Way and the origin and evolution of the elements through nucleosynthesis.
They also provide constraints on the nature of the first stars, their
associated supernovae and initial mass function, and early star and galaxy
formation. The Milky Way's dwarf satellites contain a large fraction (~30%) of
the known most metal-poor stars that have chemical abundances that closely
resemble those of equivalent halo stars. This suggests that chemical evolution
may be universal, at least at early times, and that it is driven by massive,
energetic SNe. Some of these surviving, ultra-faint systems may show the
signature of just one such PopIII star; they may even be surviving first
galaxies. Early analogs of the surviving dwarfs may thus have played an
important role in the assembly of the old Galactic halo whose formation can now
be studied with stellar chemistry. Following the cosmic evolution of small
halos in simulations of structure formation enables tracing the cosmological
origin of the most metal-poor stars in the halo and dwarf galaxies. Together
with future observations and additional modeling, many of these issues,
including the reionization history of the Milky Way, may be constrained this
way. The chapter concludes with an outlook about upcoming observational
challenges and ways forward is to use metal-poor stars to constrain theoretical
studies.Comment: 34 pages, 11 figures. Book chapter to appear in "The First Galaxies -
Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V.
Bromm, B. Mobasher, T. Wiklin
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
A distortion of very--high--redshift galaxy number counts by gravitational lensing
The observed number counts of high-redshift galaxy candidates have been used
to build up a statistical description of star-forming activity at redshift z >~
7, when galaxies reionized the Universe. Standard models predict that a high
incidence of gravitational lensing will probably distort measurements of flux
and number of these earliest galaxies. The raw probability of this happening
has been estimated to be ~ 0.5 percent, but can be larger owing to
observational biases. Here we report that gravitational lensing is likely to
dominate the observed properties of galaxies with redshifts of z >~ 12, when
the instrumental limiting magnitude is expected to be brighter than the
characteristic magnitude of the galaxy sample. The number counts could be
modified by an order of magnitude, with most galaxies being part of multiply
imaged systems, located less than 1 arcsec from brighter foreground galaxies at
z ~ 2. This lens-induced association of high-redshift and foreground galaxies
has perhaps already been observed among a sample of galaxy candidates
identified at z ~ 10.6. Future surveys will need to be designed to account for
a significant gravitational lensing bias in high-redshift galaxy samples.Comment: Nature, Jan. 13, 2011 issue (in press
Motivational Differences Across Post-Acceptance Information System Usage Behaviors: An Investigation in the Business Intelligence Systems Context
The First Stars
The first stars to form in the Universe -- the so-called Population III stars
-- bring an end to the cosmological Dark Ages, and exert an important influence
on the formation of subsequent generations of stars and on the assembly of the
first galaxies. Developing an understanding of how and when the first
Population III stars formed and what their properties were is an important goal
of modern astrophysical research. In this review, I discuss our current
understanding of the physical processes involved in the formation of Population
III stars. I show how we can identify the mass scale of the first dark matter
halos to host Population III star formation, and discuss how gas undergoes
gravitational collapse within these halos, eventually reaching protostellar
densities. I highlight some of the most important physical processes occurring
during this collapse, and indicate the areas where our current understanding
remains incomplete. Finally, I discuss in some detail the behaviour of the gas
after the formation of the first Population III protostar. I discuss both the
conventional picture, where the gas does not undergo further fragmentation and
the final stellar mass is set by the interplay between protostellar accretion
and protostellar feedback, and also the recently advanced picture in which the
gas does fragment and where dynamical interactions between fragments have an
important influence on the final distribution of stellar masses.Comment: 72 pages, 4 figures. Book chapter to appear in "The First Galaxies -
Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V.
Bromm, B. Mobasher, T. Wiklin
- …
