5,859 research outputs found

    Decay Widths of X(1835) as Nucleon-Antinucleon Bound State

    Full text link
    Partial decay widths of various decay channels of the X(1835) are evaluated in the 3P0 quark model, assuming that the X(1835) is a nucleon-antinucleon bound state. It is found that the decays to rho+rho, omega+omega and pion+a0(1450) dominate over other channels, and that the product branching fractions of J/psi to pion+pion+eta and J/psi to pion+pion+eta' are in the same order. We suggest that the X(1835) may be searched in the pion+a0(1450) channel.Comment: Changed X(1850) to X(1835) in Abstrac

    Electron-Positron Annihilation into Hadron-Antihadron Pairs

    Get PDF
    The reactions of electron-positron to nucleon-antinucleon pairs are studied in a non-perturbative quark model. The work suggests that the two-step process, in which the primary quark-antiquark pair forms first a vector meson which in turn decays into a hadron pair, is dominant over the one-step process in which the primary quark-antiquark pair is directly dressed by additional quark-antiquark pairs to form a hadron pair. To reproduce the experimental data of the reactions of electron-positron to proton-antiproton and electron-positron to neutron-antineutron a D-wave omega-like vector meson with a mass of around 2 GeV has to be introduced.Comment: 15 pages, 6 figure

    Electromagnetic form factors of the baryon octet in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.Comment: 15 pages, 6 figures, to be published in Eur. Phys. J.

    Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: the role of multipole effects

    Full text link
    We investigate theoretically the effects of interaction between an optical dipole (semiconductor quantum dot or molecule) and metal nanoparticles. The calculated absorption spectra of hybrid structures demonstrate strong effects of interference coming from the exciton-plasmon coupling. In particular, the absorption spectra acquire characteristic asymmetric lineshapes and strong anti-resonances. We present here an exact solution of the problem beyond the dipole approximation and find that the multipole treatment of the interaction is crucial for the understanding of strongly-interacting exciton-plasmon nano-systems. Interestingly, the visibility of the exciton resonance becomes greatly enhanced for small inter-particle distances due to the interference phenomenon, multipole effects, and electromagnetic enhancement. We find that the destructive interference is particularly strong. Using our exact theory, we show that the interference effects can be observed experimentally even in the exciting systems at room temperature.Comment: 9 page

    Axial form factor of the nucleon in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).Comment: 23 pages, 5 figures, accepted for publication in J. Phys.

    Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart.

    Get PDF
    This is the final published version. It first appeared at http://journal.frontiersin.org/article/10.3389/fphys.2016.00230/full.Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy

    A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole

    Full text link
    Broad Fe II emission is a prominent feature of the optical and ultraviolet spectra of quasars. We report on a systematical investigation of optical Fe II emission in a large sample of 4037 z < 0.8 quasars selected from the Sloan Digital Sky Survey. We have developed and tested a detailed line-fitting technique, taking into account the complex continuum and narrow and broad emission-line spectrum. Our primary goal is to quantify the velocity broadening and velocity shift of the Fe II spectrum in order to constrain the location of the Fe II-emitting region and its relation to the broad-line region. We find that the majority of quasars show Fe II emission that is redshifted, typically by ~ 400 km/s but up to 2000 km/s, with respect to the systemic velocity of the narrow-line region or of the conventional broad-line region as traced by the Hbeta line. Moreover, the line width of Fe II is significantly narrower than that of the broad component of Hbeta. We show that the magnitude of the Fe II redshift correlates inversely with the Eddington ratio, and that there is a tendency for sources with redshifted Fe II emission to show red asymmetry in the Hbeta line. These characteristics strongly suggest that Fe II originates from a location different from, and most likely exterior to, the region that produces most of Hbeta. The Fe II-emitting zone traces a portion of the broad-line region of intermediate velocities whose dynamics may be dominated by infall.Comment: 20 pages, 14 figures, accepted for publication in Ap

    Magnetic and structural transitions in La0.4_{0.4}Na0.6_{0.6}Fe2_2As2_2 single crystals

    Get PDF
    La0.4_{0.4}Na0.6_{0.6}Fe2_2As2_2 single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron diffraction. La0.4_{0.4}Na0.6_{0.6}Fe2_2As2_2 single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at Ts_s\,=\,125\,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the \emph{a} direction with an ordered moment of 0.7(1)\,μB\mu_{\textup{B}} at \emph{T}\,=\,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other \emph{A}Fe2_{2}As2_{2} (\emph{A}\,=\,Ca, Sr, Ba) compounds. La0.5x_{0.5-x}Na0.5+x_{0.5+x}Fe2_2As2_2 provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.Comment: 9 pages, 7 figures, to appear in Physical Review
    corecore