2,236 research outputs found
The effect of metapopulation processes on the spatial scale of adaptation across an environmental gradient
We show that the butterfly Aricia agestis (Lycaenidae) is adapted to its
thermal environment in via integer changes in the numbers of generations per year
(voltinism): it has two generations per year in warm habitats and one generation per
year in cool habitats in north Wales (UK). Voltinism is an “adaptive peak” since
individuals having an intermediate number of generations per year would fail to
survive the winter, and indeed no populations showed both voltinism types in nature.
In spite of this general pattern, 11% of populations apparently possess the “wrong”
voltinism for their local environment, and population densities were lower in thermally
intermediate habitat patches. Population dynamic data and patterns of genetic
differentiation suggest that adaptation occurs at the metapopulation level, with local
populations possessing the voltinism type appropriate for the commonest habitat type
within each population network. When populations and groups of populations go
extinct, they tend to be replaced by colonists from the commonest thermal environment
nearby, even if this is the locally incorrect adaptation. Our results illustrate how
stochastic population turnover can impose a limit on local adaptation over distances
many times larger than predicted on the basis of normal dispersal movements
Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry
A variety of events such as gamma-ray bursts and supernovae may expose the
Earth to an increased flux of high-energy cosmic rays, with potentially
important effects on the biosphere. Existing atmospheric chemistry software
does not have the capability of incorporating the effects of substantial cosmic
ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight
Center two-dimensional (latitude, altitude) time-dependent atmospheric model
(NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have
created tables that can be used to compute high energy cosmic ray (10 GeV - 1
PeV) induced atmospheric ionization and also, with the use of the NGSFC code,
can be used to simulate the resulting atmospheric chemistry changes. We discuss
the tables, their uses, weaknesses, and strengths.Comment: In press: Journal of Cosmology and Astroparticle Physics. 6 figures,
3 tables, two associated data files. Major revisions, including results of a
greatly expanded computation, clarification and updated references. In the
future we will expand the table to at least EeV levels
Ecological and evolutionary processes at expanding range margins
Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change
Deconfinement at finite chemical potential
In a confining, renormalisable, Dyson-Schwinger equation model of two-flavour
QCD we explore the chemical-potential dependence of the dressed-quark
propagator, which provides a means of determining the behaviour of the chiral
and deconfinement order parameters, and low-energy pion observables. We find
coincident, first order deconfinement and chiral symmetry restoration
transitions at \mu_c = 375 MeV. f_\pi is insensitive to \mu until \mu \approx
\mu_0 = 0.7 mu_c when it begins to increase rapidly. m_\pi is weakly dependent
on \mu, decreasing slowly with \mu and reaching a minimum 6% less than its
\mu=0 value at \mu=\mu_0. In a two-flavour free-quark gas at \mu=\mu_c the
baryon number density would be approximately 3 \rho_0, where \rho_0=0.16
fm^{-3}; while in such a gas at \mu_0 the density is \rho_0.Comment: 11 pages, 3 figures, epsfig.sty, elsart.st
RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD
Plasmid encoded replication initiation (Rep) proteins recruit host helicases to plasmid replication origins. Previously, we showed that RepD recruits directionally the PcrA helicase to the pC221 oriD, remains associated with it, and increases its processivity during plasmid unwinding. Here we show that RepD forms a complex extending upstream and downstream of the core oriD. Binding of RepD causes remodelling of a region upstream from the core oriD forming a 'landing pad' for the PcrA. PcrA is recruited by this extended RepD-DNA complex via an interaction with RepD at this upstream site. PcrA appears to have weak affinity for this region even in the absence of RepD. Upon binding of ADPNP (non-hydrolysable analogue of ATP), by PcrA, a conformational rearrangement of the RepD-PcrA-ATP initiation complex confines it strictly within the boundaries of the core oriD. We conclude that RepD-mediated recruitment of PcrA at oriD is a three step process. First, an extended RepD-oriD complex includes a region upstream from the core oriD; second, the PcrA is recruited to this upstream region and thirdly upon ATP-binding PcrA relocates within the core oriD
Preserving the palaeoenvironmental record in Drylands: Bioturbation and its significance for luminescence-derived chronologies
Luminescence (OSL) dating has revolutionised the understanding of Late Pleistocene dryland activity. However,
one of the key assumptions for this sort of palaeoenvironmental work is that sedimentary sequences have been
preserved intact, enabling their use as proxy indicators of past changes. This relies on stabilisation or burial
soon after deposition and a mechanism to prevent any subsequent re-mobilisation. As well as a dating
technique OSL, especially at the single grain level, can be used to gain an insight into post-depositional
processes that may distort or invalidate the palaeoenvironmental record of geological sediment sequences.
This paper explores the possible impact of bioturbation (the movement of sediment by flora and fauna) on
luminescence derived chronologies from Quaternary sedimentary deposits in Texas and Florida (USA) which
have both independent radiocarbon chronologies and archaeological evidence. These sites clearly illustrate the
ability of bioturbation to rejuvenate ancient weathered sandy bedrock and/or to alter depositional stratigraphies
through the processes of exhumation and sub-surface mixing of sediment. The use of multiple OSL replicate
measurements is advocated as a strategy for checking for bioturbated sediment. Where significant OSL
heterogeneity is found, caution should be taken with the derived OSL ages and further measurements at the
single grain level are recommended. Observations from the linear dunes of the Kalahari show them to have no
bedding structure and to have OSL heterogeneity similar to that shown from the bioturbated Texan and Florida
sites. The Kalahari linear dunes could have therefore undergone hitherto undetected post-depositional sediment
disturbance which would have implications for the established OSL chronology for the region
Synaptic targeting and localization of Discs-large is a stepwise process controlled by different domains of the protein
AbstractBackground: Membrane-associated guanylate kinases (MAGUKs) assemble ion channels, cell-adhesion molecules and components of second messenger cascades into synapses, and are therefore potentially important for co-ordinating synaptic strength and structure. Here, we have examined the targeting of the Drosophila MAGUK Discs-large (DLG) to larval neuromuscular junctions.Results: During development, DLG was first found associated with the muscle subcortical compartment and plasma membrane, and later was recruited to the postsynaptic membrane. Using a transgenic approach, we studied how mutations in various domains of the DLGprotein affect DLG targeting. Deletion of the HOOKregion—the region between the Src homology 3 (SH3) domain and the guanylate-kinase-like (GUK) domain—prevented association of DLG with the subcortical network and rendered the protein largely diffuse. Loss of the first two PDZ domains led to the formation of large clusters throughout the plasma membrane, with scant targeting to the neuromuscular junction. Proper trafficking of DLG missing the GUK domain depended on the presence of endogenous DLG.Conclusions: Postsynaptic targeting of DLG requires a HOOK-dependent association with extrasynaptic compartments, and interactions mediated by the first two PDZ domains. The GUK domain routes DLG between compartments, possibly by interacting with recently identified cytoskeletal-binding partners
Maximal Neutrino Mixing from a Minimal Flavor Symmetry
We study a number of models, based on a non-Abelian discrete group, that
successfully reproduce the simple and predictive Yukawa textures usually
associated with U(2) theories of flavor. These models allow for solutions to
the solar and atmospheric neutrino problems that do not require altering
successful predictions for the charged fermions or introducing sterile
neutrinos. Although Yukawa matrices are hierarchical in the models we consider,
the mixing between second- and third-generation neutrinos is naturally large.
We first present a quantitative analysis of a minimal model proposed in earlier
work, consisting of a global fit to fermion masses and mixing angles, including
the most important renormalization group effects. We then propose two new
variant models: The first reproduces all important features of the SU(5)xU(2)
unified theory with neither SU(5) nor U(2). The second demonstrates that
discrete subgroups of SU(2) can be used in constructing viable supersymmetric
theories of flavor without scalar universality even though SU(2) by itself
cannot.Comment: 34 pages LaTeX, 1 eps figure, minor revisions and references adde
Excited Baryon Decay Widths in Large N_c QCD
We study excited baryon decay widths in large N_c QCD. It was suggested
previously that some spin-flavor mixed-symmetric baryon states have strong
couplings of O(N_c^{-1/2}) to nucleons [implying narrow widths of O(1/N_c)], as
opposed to the generic expectation based on Witten's counting rules of an
O(N_c^0) coupling. The calculation obtaining these narrow widths was performed
in the context of a simple quark-shell model. This paper addresses the question
of whether the existence of such narrow states is a general property of large
N_c QCD. We show that a general large N_c QCD analysis does not predict such
narrow states; rather they are a consequence of the extreme simplicity of the
quark model.Comment: 9 page
Excited Baryons in Large N_c QCD Revisited: The Resonance Picture Versus Single-Quark Excitations
We analyze excited baryon properties via a 1/N_c expansion from two
perspectives: as resonances in meson-nucleon scattering, and as single-quark
excitations in the context of a simple quark model. For both types of analysis
one can derive novel patterns of degeneracy that emerge as N_c --> \infty, and
that are shown to be compatible with one another. This helps justify the
single-quark excitation picture and may give some insight into its successes.
We also find that in the large N_c limit one of the S_{11} baryons does not
couple to the pi-N channel but couples to the eta-N channel. This is
empirically observed in the N(1535), which couples very weakly to the pi-N
channel and quite strongly to the eta-N channel. The comparatively strong
coupling of the N(1650) to the pi-N channel and weak coupling to eta-N channel
is also predicted. In the context of the simple quark model picture we
reproduce expressions for mixing angles that are accurate up to O(1/N_c)
corrections and are in good agreement with mixing angles extracted
phenomenologically.Comment: 13 pages, ReVTeX
- …
