4,892 research outputs found

    Capacitive Micromachined Ultrasonic Transducer Array with Pencil Beam Shape and Wide Range Beam Steering

    Get PDF
    AbstractA capacitive micromachined ultrasonic transducer (CMUT) array is designed as an alternative to conventional piezoelectric transducers. A thin silicon nitride membrane is suspended over a bottom electrode on a silicon wafer. In the immersion mode, the transducer cell shape and dimensions are optimized for an operating frequency of 10MHz. We show that the proposed imager array can generate a pencil shape beam with a ∼1.5° half beam width, enhancing the detector resolution. A phased array technique is employed to excite multiple cells using time-delayed signals to steer the acoustic beam toward the object. This eliminates the need to mechanically move the detector, simplifying the transducer driving system. Moreover, unlike conventional transducers, the pencil beam can be effectively steered over a wide range of angles without producing grating lobes, which minimizes power loss in undesired directions. This can also improve the signal to noise ratio of the imager CMUT array

    Anderson transition and thermal effects on electron states in amorphous silicon

    Full text link
    I discuss the properties of electron states in amorphous Si based on large scale calculations with realistic several thousand atom models. A relatively simple model for the localized to extended (Anderson) transition is reviewed. Then, the effect of thermal disorder on localized electron states is considered. It is found that under readily accessible conditions, localized (midgap or band tail) states and their conjugate energies may fluctuate dramatically. The possible importance of non-adiabatic atomic dynamics to doped or photo-excited systems is briefly discussed.Comment: Was presented at ICAMS18, Snowbird UT, August 1999. Submitted to J. of Non-Cryst. Solid

    Multiplayer Cost Games with Simple Nash Equilibria

    Full text link
    Multiplayer games with selfish agents naturally occur in the design of distributed and embedded systems. As the goals of selfish agents are usually neither equivalent nor antagonistic to each other, such games are non zero-sum games. We study such games and show that a large class of these games, including games where the individual objectives are mean- or discounted-payoff, or quantitative reachability, and show that they do not only have a solution, but a simple solution. We establish the existence of Nash equilibria that are composed of k memoryless strategies for each agent in a setting with k agents, one main and k-1 minor strategies. The main strategy describes what happens when all agents comply, whereas the minor strategies ensure that all other agents immediately start to co-operate against the agent who first deviates from the plan. This simplicity is important, as rational agents are an idealisation. Realistically, agents have to decide on their moves with very limited resources, and complicated strategies that require exponential--or even non-elementary--implementations cannot realistically be implemented. The existence of simple strategies that we prove in this paper therefore holds a promise of implementability.Comment: 23 page

    Group delay in Bragg grating with linear chirp

    Full text link
    An analytic solution for Bragg grating with linear chirp in the form of confluent hypergeometric functions is analyzed in the asymptotic limit of long grating. Simple formulas for reflection coefficient and group delay are derived. The simplification makes it possible to analyze irregularities of the curves and suggest the ways of their suppression. It is shown that the increase in chirp at fixed other parameters decreases the oscillations in the group delay, but gains the oscillations in the reflection spectrum. The conclusions are in agreement with numerical calculations.Comment: 16 pages, 8 figures, submitted to Opt. Com

    Quantum dynamics of crystals of molecular nanomagnets inside a resonant cavity

    Get PDF
    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between Fabry-Perot superconducting mirrors. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM

    Piecewise continuous distribution function method: Fluid equations and wave disturbances at stratified gas

    Full text link
    Wave disturbances of a stratified gas are studied. The description is built on a basis of the Bhatnagar -- Gross -- Krook (BGK) kinetic equation which is reduced down the level of fluid mechanics. The double momenta set is introduced inside a scheme of iterations of the equations operators, dividing the velocity space along and opposite gravity field direction. At both half-spaces the local equilibrium is supposed. As the result, the momenta system is derived. It reproduce Navier-Stokes and Barnett equations at the first and second order in high collision frequencies. The homogeneous background limit gives the known results obtained by direct kinetics applications by Loyalka and Cheng as the recent higher momentum fluid mechanics results of Chen, Rao and Spiegel. The ground state declines from exponential at the Knudsen regime. The WKB solutions for ultrasound in exponentially stratified medium are constructed in explicit form, evaluated and plotted.Comment: 20 pages, 7 figures, 14 ISNA conference, 199

    Slow dynamics for the dilute Ising model in the phase coexistence region

    Full text link
    In this paper we consider the Glauber dynamics for a disordered ferromagnetic Ising model, in the region of phase coexistence. It was conjectured several decades ago that the spin autocorrelation decays as a negative power of time [Huse and Fisher, Phys. Rev. B, 1987]. We confirm this behavior by establishing a corresponding lower bound in any dimensions d2d \geqslant 2, together with an upper bound when d=2d=2. Our approach is deeply connected to the Wulff construction for the dilute Ising model. We consider initial phase profiles with a reduced surface tension on their boundary and prove that, under mild conditions, those profiles are separated from the (equilibrium) pure plus phase by an energy barrier.Comment: 44 pages, 6 figure

    D-brane dynamics near compactified NS5-branes

    Full text link
    We examine the dynamics of a DpDp-brane in the background of kk coincident, parallel NSNS5-branes which have had one of their common transverse directions compactified. We find that for small energy, bound orbits can exist at sufficiently large distances where there will be no stringy effects. The orbits are dependent upon the energy density, angular momentum and electric field. The analysis breaks down at radial distances comparable with the compactification radius and we must resort to using a modified form of the harmonic function in this region.Comment: Latex, 20 pages, 6 figs, references adde
    corecore