1,626 research outputs found
EFFECTS OF JOINT PRODUCT MANAGEMENT STRATEGIES ON E.COLI 0157:H7 AND FEEDLOT PROFITS
The objective of this study was to determine the effect of Escherichia coli 0157:H7 on feedlot profits. Fecal samples from 711 feedlot pens in 73 feedlots in Nebraska, Kansas, Oklahoma, and Texas were tested for E. coli 0157:H7. Average daily gain and feed-to-gain ratios were computed for each feedlot pen, and managers from each feedlot provided information on various feedlot management practices. Cattle performance and E. coli 0157:H7 prevalence are both affected by feedlot management practices. The indirect effect of E. coli 0157:H7 on potential feedlot profits was determined by measuring the effects of management practices on E. coli 0157:H7 levels and cattle performance. Management practices that affect cattle performance were identified using ordinary least squares regressions. A negative binomial regression was used to identify management practices that affect E. coli 0157:H7 prevalence. Certain feedlot management practices were identified that have a joint impact on cattle performance and E. coli 0157:H7 prevalence. Using predatory insects to control flies, controlling for stray dogs, foxes, and coyotes in feed areas, removing manure from pens during finishing, and including tallow in the ration were management strategies associated with higher feedlot profits and lower E. coli 0157:H7 prevalence. Using mobile sprinklers for dust control and including alfalfa or sorghum hay or silage in the ration were associated with lower E. coli 0157:H7 prevalence and lower feedlot profits. Increasing days between cleaning water tanks and restricting movement of horses were associated with higher feedlot profits and higher E. coli 0157:H7 levels. Controlling for stray cats in feed areas and including liquid protein in the ration were associated with lower feedlot profits and higher E. coli 0157:H7 levels. These specific management strategies, which were not robust through a sensitivity analysis, should be interpreted with caution. The general categories of management strategies, however, were robust and consistent with past researchLivestock Production/Industries,
Computational techniques for the assessment of fracture repair
The combination of high-resolution three-dimensional medical imaging, increased computing power, and modern computational methods provide unprecedented capabilities for assessing the repair and healing of fractured bone. Fracture healing is a natural process that restores the mechanical integrity of bone and is greatly influenced by the prevailing mechanical environment. Mechanobiological theories have been proposed to provide greater insight into the relationships between mechanics (stress and strain) and biology. Computational approaches for modelling these relationships have evolved from simple tools to analyze fracture healing at a single point in time to current models that capture complex biological events such as angiogenesis, stochasticity in cellular activities, and cell-phenotype specific activities. The predictive capacity of these models has been established using corroborating physical experiments. For clinical application, mechanobiological models accounting for patient-to-patient variability hold the potential to predict fracture healing and thereby help clinicians to customize treatment. Advanced imaging tools permit patient-specific geometries to be used in such models. Refining the models to study the strain fields within a fracture gap and adapting the models for case-specific simulation may provide more accurate examination of the relationship between strain and fracture healing in actual patients. Medical imaging systems have significantly advanced the capability for less invasive visualization of injured musculoskeletal tissues, but all too often the consideration of these rich datasets has stopped at the level of subjective observation. Computational image analysis methods have not yet been applied to study fracture healing, but two comparable challenges which have been addressed in this general area are the evaluation of fracture severity and of fracture-associated soft tissue injury. CT-based methodologies developed to assess and quantify these factors are described and results presented to show the potential of these analysis methods
Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism
The oscillation of tunnel splitting in the biaxial spin system within
magnetic field along the anisotropy axis is analyzed within the particle
mapping approach, rather than in the (\theta-\phi) spin coherent-state
representation. In our mapping procedure, the spin system is transformed into a
particle moving in the restricted geometry whose wave function subjects
to the boundary condition involving additional phase shift. We obtain the new
topological phase that plays the same role as the Wess-Zumino action in spin
coherent-state representation. Considering the interference of two possible
trajectories, instanton and anti-instanton, we get the identical condition for
the field at which tunneling is quenched, with the previous result within spin
coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte
Study of an Alternate Mechanism for the Origin of Fermion Generations
In usual extended technicolor (ETC) theories based on the group
, the quarks of charge 2/3 and -1/3 and the charged
leptons of all generations arise from ETC fermion multiplets transforming
according to the fundamental representation. Here we investigate a different
idea for the origin of SM fermion generations, in which quarks and charged
leptons of different generations arise from ETC fermions transforming according
to different representations of . Although this
mechanism would have the potential, {\it a priori}, to allow a reduction in the
value of relative to conventional ETC models, we show that, at least
in simple models, it is excluded by the fact that the technicolor sector is not
asymptotically free or by the appearance of fermions with exotic quantum
numbers which are not observed.Comment: 6 pages, late
High frequency resonant experiments in Fe molecular clusters
Precise resonant experiments on Fe magnetic clusters have been
conducted down to 1.2 K at various tranverse magnetic fields, using a
cylindrical resonator cavity with 40 different frequencies between 37 GHz and
110 GHz. All the observed resonances for both single crystal and oriented
powder, have been fitted by the eigenstates of the hamiltonian . We have identified the
resonances corresponding to the coherent quantum oscillations for different
orientations of spin S = 10.Comment: to appear in Phys.Rev. B (August 2000
Photoconductance Quantization in a Single-Photon Detector
We have made a single-photon detector that relies on photoconductive gain in
a narrow electron channel in an AlGaAs/GaAs 2-dimensional electron gas. Given
that the electron channel is 1-dimensional, the photo-induced conductance has
plateaus at multiples of the quantum conductance 2e/h. Super-imposed on
these broad conductance plateaus are many sharp, small, conductance steps
associated with single-photon absorption events that produce individual
photo-carriers. This type of photoconductive detector could measure a single
photon, while safely storing and protecting the spin degree of freedom of its
photo-carrier. This function is valuable for a quantum repeater that would
allow very long distance teleportation of quantum information.Comment: 4 pages, 4 figure
"Dark energy" in the Local Void
The unexpected discovery of the accelerated cosmic expansion in 1998 has
filled the Universe with the embarrassing presence of an unidentified "dark
energy", or cosmological constant, devoid of any physical meaning. While this
standard cosmology seems to work well at the global level, improved knowledge
of the kinematics and other properties of our extragalactic neighborhood
indicates the need for a better theory. We investigate whether the recently
suggested repulsive-gravity scenario can account for some of the features that
are unexplained by the standard model. Through simple dynamical considerations,
we find that the Local Void could host an amount of antimatter
() roughly equivalent to the mass of a typical
supercluster, thus restoring the matter-antimatter symmetry. The antigravity
field produced by this "dark repulsor" can explain the anomalous motion of the
Local Sheet away from the Local Void, as well as several other properties of
nearby galaxies that seem to require void evacuation and structure formation
much faster than expected from the standard model. At the global cosmological
level, gravitational repulsion from antimatter hidden in voids can provide more
than enough potential energy to drive both the cosmic expansion and its
acceleration, with no need for an initial "explosion" and dark energy.
Moreover, the discrete distribution of these dark repulsors, in contrast to the
uniformly permeating dark energy, can also explain dark flows and other
recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space
Scienc
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
- …
