511 research outputs found
Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change
Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year
Generation of a wave packet tailored to efficient free space excitation of a single atom
We demonstrate the generation of an optical dipole wave suitable for the
process of efficiently coupling single quanta of light and matter in free
space. We employ a parabolic mirror for the conversion of a transverse beam
mode to a focused dipole wave and show the required spatial and temporal
shaping of the mode incident onto the mirror. The results include a proof of
principle correction of the parabolic mirror's aberrations. For the application
of exciting an atom with a single photon pulse we demonstrate the creation of a
suitable temporal pulse envelope. We infer coupling strengths of 89% and
success probabilities of up to 87% for the application of exciting a single
atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.
Recommended from our members
Laboratory investigation of constitutive property up-scaling in volcanic tuffs
One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property up-scaling is addressed. Property up-scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property up-scaling with the aim of developing and testing improved models that describe up-scaling behavior in a quantitative manner. Up-scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. To date, up-scaling studies have been performed on a series of tuff and sandstone (used as experimental controls) blocks. Samples include a welded, anisotropic tuff (Tiva Canyon Member of the Paintbrush Tuff, upper cliff microstratigraphic unit), and a moderately welded tuff (Tiva Canyon Member of the Paintbrush Tuff, Caprock microstratigraphic unit). A massive fluvial sandstone (Berea Sandstone) was also investigated as a means of evaluating the experimental program and to provide a point of comparison for the tuff data. Because unsaturated flow is of prime interest to the Yucca Mountain Program, scoping studies aimed at investigating the up-scaling of hydraulic properties under various saturated conditions were performed to compliment these studies of intrinsic permeability. These studies focused on matrix sorptivity, a constitutive property quantifying the capillarity of a porous medium. 113 refs
Recommended from our members
Laboratory imaging of stimulation fluid displacement from hydraulic fractures
Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack
Laboratory Imaging of Stimulation Fluid Displacement from Hydraulic Fractures
Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack
Tomlinsonia stichkania sp. nov., a permineralized grass from the Pliocene to (?)Pleistocene China Ranch beds in Sperry Wash, California
Permineralized specimens of grasses assignable to Tomlinsonia as a new species Tomlinsonia stichkania occur in the China Ranch beds of Pliocene to possible Pleistocene age in Sperry Wash in the Alexander Hills of southeastern California. The round culm of these grasses is generally solid or occasionally hollow with collateral vascular bundles in the distinct outer and indistinct inner rings. Two-ranked leaf sheaths alternately encircle and overlap the culm. Ridges and furrows occur in the abaxial surfaces of the sheaths. The epidermis of the leaf sheaths is similar to that of the culm. The leaf lamina consists of a three-layered mesophyll. Long and short cells cannot be distinguished in the leaves, and ligules are not present. Based upon its leaf anatomy and its low ratios of -24.6%, this species is proposed as a C grass. Tomlinsonia stichkania is also important because of the rarity of permineralized grasses. It is only the second or third grass species described from specimens with this type of preservation
Neurocranial osteology and neuroanatomy of a late Cretaceous Titanosaurian Sauropod from Spain (Ampelosaurus sp.)
Titanosaurians were a flourishing group of sauropod dinosaurs during Cretaceous times. Fossils of titanosaurians have been found on all continents and their remains are abundant in a number of Late Cretaceous sites. Nonetheless, the cranial anatomy of titanosaurians is still very poorly known. The Spanish latest Cretaceous locality of "Lo Hueco" yielded a relatively well preserved, titanosaurian braincase, which shares a number of phylogenetically restricted characters with Ampelosaurus atacis from France such as a flat occipital region. However, it appears to differ from A. atacis in some traits such as the greater degree of dorsoventral compression and the presence of proatlas facets. The specimen is, therefore, provisionally identified as Ampelosaurus sp. It was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. Our investigation highlights that, although titanosaurs were derived sauropods with a successful evolutionary history, they present a remarkably modest level of paleoneurological organization. Compared with the condition in the basal titanosauriform Giraffatitan brancai, the labyrinth of Ampelosaurus sp. shows a reduced morphology. The latter feature is possibly related to a restricted range of head-turning movementsThis is a contribution to the research project CGL2009-12143 (Ministerio de Economía y Competitividad, Madrid), of which FK, who is currently supported by the Ramón y Cajal Program, is Principal Investigator. LMW and RCR acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257, IOS-1050154) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided suppor
Applying Interconnected Game Theory to Analyze Transboundary Waters: A Case Study of the Kura-Araks Basin
A number of environmental problems are international in nature, including many water management issues. Rivers, for example, do not recognize political boundaries. Therefore, pollution generated in one country can affect neighboring countries, while water extraction in an upstream country can affect water flow and water availability in a downstream country. The situation creates an interdependency among countries, which might lead to disputes over the management of transboundary water. Therefore, coordination among the countries is necessary for effective management of these transboundary resources.
The focus of a recently published study (Khachaturyan and Schoengold, 2018) is the transboundary Kura-Araks Basin (see Figure 1 for its location), which is a major river system in the South Caucasus, with about 11 million people living in the basin. The countries in the basin are Armenia, Azerbaijan, Georgia, Iran, and Turkey, with Armenia, Azerbaijan, and Georgia having over 80 percent of the streamflow. The Kura-Araks Basin is a primary source of water for agricultural, industrial, and municipal uses in the South Caucasian countries. The study determines whether there are economic benefits to be gained from cooperation in the management of the Kura River (shared between Azerbaijan and Georgia), and under what conditions cooperation is an achievable outcome. Azerbaijan withdraws about 35 percent of the total available renewable water resources while Georgia only withdraws about 3 percent
A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria
We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido
- …
