160 research outputs found

    Technical Note: Could benzalkonium chloride be a suitable alternative to mercuric chloride for preservation of seawater samples?

    Get PDF
    Instrumental equipment unsuitable or unavailable for fieldwork as well as lack of ship space can necessitate the preservation of seawater samples prior to analysis in a shore-based laboratory. Mercuric chloride (HgCl2) is routinely used for such preservation, but its handling and subsequent disposal incur environmental risks and significant expense. There is therefore a strong motivation to find less hazardous alternatives. Benzalkonium chloride (BAC) has been used previously as microbial inhibitor for freshwater samples. Here, we assess the use of BAC for marine samples prior to the measurement of oxygen-to-argon (O2 / Ar) ratios, as used for the determination of biological net community production. BAC at a concentration of 50 mg dm−3 inhibited microbial activity for at least 3 days in samples tested with chlorophyll a (Chl a) concentrations up to 1 mg m−3. BAC concentrations of 100 and 200 mg dm−3 were no more effective than 50 mg dm−3 . With fewer risks to human health and the environment, and no requirement for expensive waste disposal, BAC could be a viable alternative to HgCl2 for short-term preservation of seawater samples, but is not a replacement for HgCl2 in the case of oxygen triple isotope analysis, which requires storage over weeks to months. In any event, further tests on a case-by-case basis should be undertaken if use of BAC was considered, since its inhibitory activity may depend on concentration and composition of the microbial community

    Earth observation tool for monitoring coastal eutrophication

    Get PDF
    ISECA is an Interreg project running until September 2014 that aims to advance and disseminate scientific knowledge related to eutrophication in the 2Seas area (English Channel and North Sea).The main objective of ISECA is to develop a demonstration prototype of an information system for monitoring eutrophication of coastal waters.This information system combines in-situ, satellite information and models outputs

    Carbon sequestration in the deep Atlantic enhanced by Saharan dust

    Get PDF
    sinking rates of particulate organicmatter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles

    Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry

    Get PDF
    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400–450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m−1 and a precision of about 0.0025 m−1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms

    Does presence of a mid-ocean ridge enhance biomass and biodiversity?

    Get PDF
    In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km 2 in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.Peer reviewe

    The roles of specialist provision for children with specific speech and language difficulties in England and Wales: a model for inclusion?

    Get PDF
    Children with specific speech and language difficulties pose a challenge to the education and health systems. In addition to their language difficulties they are also at risk of literacy and social, emotional and behavioural difficulties. The main support for children with more severe difficulties has been enhanced provision in mainstream schools (language units or integrated resources) and special schools. The move to an inclusive education system challenges this tradition. The present paper reports the results of interviews with heads of language units/integrated resources and headteachers of special schools (n=57) as part of a larger study within England and Wales. Their views are considered with reference to criteria for entry to specialist provision, the development of collaborative practice between teachers, teaching assistants and speech and language therapists, and the implications for inclusive education

    Carbon sequestration in the deep Atlantic enhanced by Saharan dust

    Get PDF
    Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles

    The Atlantic Ocean surface microlayer from 50°N to 50°S is ubiquitously enriched in surfactants at wind speeds up to 13 m s−1

    Get PDF
    We report the first measurements of surfactant activity (SA) in the sea surface microlayer (SML) and in subsurface waters (SSW) at the ocean basin scale, for two Atlantic Meridional Transect from cruises 50°N to 50°S during 2014 and 2015. Northern Hemisphere (NH) SA was significantly higher than Southern Hemisphere (SH) SA in the SML and in the SSW. SA enrichment factors (EF = SASML/SASSW) were also higher in the NH, for wind speeds up to ~13 m s−1, questioning a prior assertion that Atlantic Ocean wind speeds >12 m s−1 poleward of 30°N and 30°S would preclude high EFs and showing the SML to be self-sustaining with respect to SA. Our results imply that surfactants exert a control on air-sea CO2 exchange across the whole North Atlantic CO2 sink region and that the contribution made by high wind, high latitude oceans to air-sea gas exchange globally should be reexamined

    CoastColour Round Robin datasets: A data base to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters

    Get PDF
    The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.JRC.H.1-Water Resource
    corecore