1,386 research outputs found

    Ancient technology and punctuated change: Detecting the emergence of the Edomite Kingdom in the Southern Levant.

    Get PDF
    While the punctuated equilibrium model has been employed in paleontological and archaeological research, it has rarely been applied for technological and social evolution in the Holocene. Using metallurgical technologies from the Wadi Arabah (Jordan/Israel) as a case study, we demonstrate a gradual technological development (13th-10th c. BCE) followed by a human agency-triggered punctuated "leap" (late-10th c. BCE) simultaneously across the entire region (an area of ~2000 km2). Here, we present an unparalleled, diachronic archaeometallurgical dataset focusing on elemental analysis of dozens of well-dated slag samples. Based on the results, we suggest punctuated equilibrium provides an innovative theoretical model for exploring ancient technological changes in relation to larger sociopolitical conditions-in the case at hand the emergence of biblical Edom-, exemplifying its potential for more general cross-cultural applications

    A study of diabetes mellitus within a large sample of Australian twins.

    Get PDF
    Udgivelsesdato: 2008-FebTwin studies of diabetes mellitus can help elucidate genetic and environmental factors in etiology and can provide valuable biological samples for testing functional hypotheses, for example using expression and methylation studies of discordant pairs. We searched the volunteer Australian Twin Registry (19,387 pairs) for twins with diabetes using disease checklists from nine different surveys conducted from 1980-2000. After follow-up questionnaires to the twins and their doctors to confirm diagnoses, we eventually identified 46 pairs where one or both had type 1 diabetes (T1D), 113 pairs with type 2 diabetes (T2D), 41 female pairs with gestational diabetes (GD), 5 pairs with impaired glucose tolerance (IGT) and one pair with MODY. Heritabilities of T1D, T2D and GD were all high, but our samples did not have the power to detect effects of shared environment unless they were very large. Weight differences between affected and unaffected cotwins from monozygotic (MZ) discordant pairs were large for T2D and GD, but much larger again for discordant dizygotic (DZ) pairs. The bivariate genetic analysis (under the multifactorial threshold model) estimated the genetic correlation between body mass index (BMI) and T2D to be 0.46, and the environmental correlation at only 0.06

    Gait training with real-time augmented toe-ground clearance information decreases tripping risk in older adults and a person with chronic stroke

    Get PDF
    Falls risk increases with ageing but is substantially higher in people with stroke. Tripping-related balance loss is the primary cause of falls, and Minimum Toe Clearance (MTC) during walking is closely linked to tripping risk. The aim of this study was to determine whether real-time augmented information of toe-ground clearance at MTC can increase toe clearance, and reduce tripping risk. Nine healthy older adults (76 ± 9 years) and one 71 year old female stroke patient participated. Vertical toe displacement was displayed in real-time such that participants could adjust their toe clearance during treadmill walking. Participants undertook a session of unconstrained walking (no-feedback baseline) and, in a subsequent Feedback condition, were asked to modify their swing phase trajectory to match a "target" increased MTC. Tripping probability (PT) pre- and post-training was calculated by modeling MTC distributions. Older adults showed significantly higher mean MTC for the post-training retention session (27.7 ± 3.79 mm) compared to the normal walking trial (14.1 ± 8.3 mm). The PT on a 1 cm obstacle for the older adults reduced from 1 in 578 strides to 1 in 105,988 strides. With gait training the stroke patient increased MTC and reduced variability (baseline 16 ± 12 mm, post-training 24 ± 8 mm) which reduced obstacle contact probability from 1 in 3 strides in baseline to 1 in 161 strides post-training. The findings confirm that concurrent visual feedback of a lower limb kinematic gait parameter is effective in changing foot trajectory control and reducing tripping probability in older adults. There is potential for further investigation of augmented feedback training across a range of gait-impaired populations, such as stroke

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication

    Get PDF
    Gene duplication is an important mechanism in the evolution of protein interaction networks. Duplications are followed by the gain and loss of interactions, rewiring the network at some unknown rate. Because rewiring is likely to change the distribution of network motifs within the duplicated interaction set, it should be possible to study network rewiring by tracking the evolution of these motifs. We have developed a mathematical framework that, together with duplication data from comparative genomic and proteomic studies, allows us to infer the connectivity of the preduplication network and the changes in connectivity over time. We focused on the whole-genome duplication (WGD) event in Saccharomyces cerevisiae. The model allowed us to predict the frequency of intergene interaction before WGD and the post duplication probabilities of interaction gain and loss. We find that the predicted frequency of self-interactions in the preduplication network is significantly higher than that observed in today's network. This could suggest a structural difference between the modern and ancestral networks, preferential addition or retention of interactions between ohnologs, or selective pressure to preserve duplicates of self-interacting proteins

    Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning

    Get PDF
    This is an author-created version of this article. The original source of publication is Psychon Bull Rev. 2006 Dec;13(6):935-53 The final publication is available at www.springerlink.com Published version: http://dx.doi.org/10.3758/BF0321390

    Opposite GC skews at the 5' and 3' ends of genes in unicellular fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GC-skews have previously been linked to transcription in some eukaryotes. They have been associated with transcription start sites, with the coding strand G-biased in mammals and C-biased in fungi and invertebrates.</p> <p>Results</p> <p>We show a consistent and highly significant pattern of GC-skew within genes of almost all unicellular fungi. The pattern of GC-skew is asymmetrical: the coding strand of genes is typically C-biased at the 5' ends but G-biased at the 3' ends, with intermediate skews at the middle of genes. Thus, the initiation, elongation, and termination phases of transcription are associated with different skews. This pattern influences the encoded proteins by generating differential usage of amino acids at the 5' and 3' ends of genes. These biases also affect fourfold-degenerate positions and extend into promoters and 3' UTRs, indicating that skews cannot be accounted by selection for protein function or translation.</p> <p>Conclusions</p> <p>We propose two explanations, the mutational pressure hypothesis, and the adaptive hypothesis. The mutational pressure hypothesis is that different co-factors bind to RNA pol II at different phases of transcription, producing different mutational regimes. The adaptive hypothesis is that cytidine triphosphate deficiency may lead to C-avoidance at the 3' ends of transcripts to control the flow of RNA pol II molecules and reduce their frequency of collisions.</p

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma

    Get PDF
    Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.National Institutes of Health (U.S.) (U24 CA180922
    corecore