1,183 research outputs found
Numerical modelling and simulation in sheet metal forming
The application of numerical modelling and simulation in manufacturing technologies is looking back over about a 20–30 years history. In recent years, the role of modelling and simulation in engineering and in manufacturing industry has been continuously increasing. It is well known that during manufacturing processes simultaneous the effect of many different parameters can be observed. This is the reason why in former years, detailed analysis of manufacturing processes could have been done only by time-consuming and expensive trial-and-error methods. Due to the recent developments in the methods of modelling and simulation, as well as in computational facilities, modelling and simulation has become an everyday tool in engineering practice. Besides the aforementioned facts, the emerging role of modelling and simulation can also be explained by the growing globalisation and competition of the world market requiring shorter lead times and more cost effective solutions. In spite the enormous development of hardware and software facilities, the exclusive use of numerical modelling still seems to be very time- and cost consuming, and there is still often a high scepticism about the results among industrialists. Therefore, the purpose of this paper is to overview the present situation of numerical modelling and simulation in sheet metal forming, mainly from the viewpoint of scientific research and industrial applications
Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes
Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most
important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by
the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent
achievements in this very important field of sheet metal forming and to introduce some special results in this development activity.
Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may
be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate
these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems.
Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically
reducing the time and cost of product development cycle and improving product quality.
Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the
robustness of data exchange capabilities between various systems to provide an even more streamlined information flow.
Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet
metal forming in the very important segment of industry.
Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers
Statistical Thermodynamics
Contains a report on a research project.United States Air Force, Office of Scientific Research, Air Research and Development Command (Contract AF49(638)-95
Statistical Thermodynamics
Contains reports on one research project.U.S. Air Force (Office of Scientific Research, Air Research and Development Command) under Contract AF49(638)-9
Integrated Process Simulation and Die Design in Sheet Metal Forming
During the recent 10-15 years, Computer Aided Process Planning and Die Design
evolved as one of the most important engineering tools in sheet metal forming, particularly in
the automotive industry. This emerging role is strongly emphasized by the rapid development
of Finite Element Modelling, as well. The purpose of this paper is to give a general overview
about the recent achievements in this very important field of sheet metal forming and to
introduce some special results in this development activity. Therefore, in this paper, an
integrated process simulation and die design system developed at the University of Miskolc,
Department of Mechanical Engineering will be analysed. The proposed integrated solutions
have great practical importance to improve the global competitiveness of sheet metal forming
in the very important segment of industry. The concept described in this paper may have
specific value both for process planning and die design engineers
Plant structural complexity and mechanical defenses mediate predator-prey interactions in an odonate-bird system.
Habitat-forming species provide refuges for a variety of associating species; these refuges may mediate interactions between species differently depending on the functional traits of the habitat-forming species. We investigated refuge provisioning by plants with different functional traits for dragonfly and damselfly (Odonata: Anisoptera and Zygoptera) nymphs emerging from water bodies to molt into their adult stage. During this period, nymphs experience high levels of predation by birds. On the shores of a small pond, plants with mechanical defenses (e.g., thorns and prickles) and high structural complexity had higher abundances of odonate exuviae than nearby plants which lacked mechanical defenses and exhibited low structural complexity. To disentangle the relative effects of these two potentially important functional traits on nymph emergence-site preference and survival, we conducted two fully crossed factorial field experiments using artificial plants. Nymphs showed a strong preference for artificial plants with high structural complexity and to a lesser extent, mechanical defenses. Both functional traits increased nymph survival but through different mechanisms. We suggest that future investigations attempt to experimentally separate the elements contributing to structural complexity to elucidate the mechanistic underpinnings of refuge provisioning
Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes
In this paper, we study the phase structure and equilibrium state space
geometry of charged topological Gauss-Bonnet black holes in -dimensional
anti-de Sitter spacetime. Several critical points are obtained in the canonical
ensemble, and the critical phenomena and critical exponents near them are
examined. We find that the phase structures and critical phenomena drastically
depend on the cosmological constant and dimensionality . The
result also shows that there exists an analogy between the black hole and the
van der Waals liquid gas system. Moreover, we explore the phase transition and
possible property of the microstructure using the state space geometry. It is
found that the Ruppeiner curvature diverges exactly at the points where the
heat capacity at constant charge of the black hole diverges. This black hole is
also found to be a multiple system, i.e., it is similar to the ideal gas of
fermions in some range of the parameters, while to the ideal gas of bosons in
another range.Comment: 17 pages, 8 figures, 3 table
- …
